Advertisement

Biodiversity and Conservation

, Volume 27, Issue 4, pp 815–828 | Cite as

Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado

  • Daiana Cardoso Silva
  • Thiago Bernardi Vieira
  • Joaquim Manoel da Silva
  • Karina de Cassia Faria
Original Paper

Abstract

In this study, we describe the distribution pattern of bat species and select priority areas for the conservation of the Cerrado based on a systematic planning approach. We estimated species richness and calculated the total beta diversity based on Sørensen’s dissimilarity index (βsor). We estimated the species turnover using Simpson’s dissimilarity index (βsim). We then evaluated the nesting (βsne) by the difference between the dissimilarity indices (βsor and βsim). Based on this analysis, we identified the priority areas for the conservation of bats in the Cerrado based on the zonation approach. We found that the species richness and beta diversity of bats in the Cerrado are concentrated primarily in the central and northern portions of the biome. We also discovered that the conservation units of the Cerrado are ineffective for the protection of species with a restricted distribution (≤ 150 grid cells), such as Vampyrum spectrum, for which we propose the creation of new conservation units that better cover the diversity patterns observed in the present study. By conserving this diversity, we will also be protecting local habitats, which will in turn enable the survival of a wide range of species, and provide the ecosystems with the capacity to respond adequately to future changes in the environment.

Keywords

Chiroptera Spatial turnover Nesting Rare species Conservation units Beta diversity 

Notes

Acknowledgements

The authors thank the Brazilian agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for its financial support.

Supplementary material

10531_2017_1464_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)
10531_2017_1464_MOESM2_ESM.docx (40 kb)
Supplementary material 2 (DOCX 40 kb)
10531_2017_1464_MOESM3_ESM.docx (854 kb)
Supplementary material 3 (DOCX 854 kb)

References

  1. Aguiar LMS, Bernard E, Machado RB (2014) Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera: Phyllostomidae) in a Neotropical savannah. Zoologia 31:223–229.  https://doi.org/10.1590/S1984-46702014000300003 CrossRefGoogle Scholar
  2. Aires CC, do Nascimento FO, Césari A (2011) Mammalia, Chiroptera, Vespertilionidae, Rhogeessa hussoni Genoways and Baker, 1996: distribution extension and taxonomic notes. Check List 7:117–119CrossRefGoogle Scholar
  3. Aldrich S, Walker R, Simmons C et al (2012) Contentious land change in the Amazon’s arc of deforestation. Ann Assoc Am Geogr 102:103–128CrossRefGoogle Scholar
  4. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688.  https://doi.org/10.1111/j.1365-2699.2006.01584.x CrossRefGoogle Scholar
  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143.  https://doi.org/10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  6. Baselga A, Orme DL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812.  https://doi.org/10.1111/j.2041-210X.2012.00224.x CrossRefGoogle Scholar
  7. Bini LM, Diniz-Filho JAF, Rangel TFLVB et al (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers Distrib 12:475–482.  https://doi.org/10.1111/j.1366-9516.2006.00286.x CrossRefGoogle Scholar
  8. Cadotte MW, Davies TJ (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers Distrib 16:376–385.  https://doi.org/10.1111/j.1472-4642.2010.00650.x CrossRefGoogle Scholar
  9. de Oliveira SL, Souza LAS, Silva HK, de Faria KC (2015) Spatial configuration of the occurrence of bat species (Mammalia: Chiroptera) in eastern. Biota Neotrop 15:1–8CrossRefGoogle Scholar
  10. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514.  https://doi.org/10.1111/j.0030-1299.2008.16215.x CrossRefGoogle Scholar
  11. Diniz-filho JAF, Bini LM, De Oliveira G et al (2009) Macroecologia, biogeografia e áreas prioritárias para conservação no cerrado. Oecologia Bras 13:470–497.  https://doi.org/10.4257/oeco.2009.1303.05 CrossRefGoogle Scholar
  12. Diniz-Filho JAF, Nabout JC, Bini LM et al (2010) Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv Divers 3:213–221.  https://doi.org/10.1111/j.1752-4598.2010.00090.x Google Scholar
  13. Diserud OH, Odegaard F (2007) A multiple-site similarity measure. Biol Lett 3:20–22CrossRefPubMedGoogle Scholar
  14. Elith J, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151CrossRefGoogle Scholar
  15. Estrada A, Coates-Estrada R, Merritt D Jr (1993) Bat species richness and abundance in tropical rain forest fragments in agricultura habitats at Los Tuxtlas, Mexico. Ecography (Cop) 16:309–318CrossRefGoogle Scholar
  16. Farneda FZ, Rocha R, López-Baucells A et al (2015) Trait-related responses to habitat fragmentation in Amazonian bats. J Appl Ecol 52:1381–1391.  https://doi.org/10.1111/1365-2664.12490 CrossRefGoogle Scholar
  17. Felfili JM, Silva Júnior MC (1993) A comparative study of Cerrado (Sensu stricto) vegetation central Brazil. J Trop Ecol 9:277–289CrossRefGoogle Scholar
  18. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  19. Françoso RD, Brandão R, Nogueira CC et al (2015) Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat Conserv 13:35–40.  https://doi.org/10.1016/j.ncon.2015.04.001 CrossRefGoogle Scholar
  20. Gardner AL (2008) Mammals of South America, vol 1. The University of Chigago Press, LondonCrossRefGoogle Scholar
  21. Giannini NP, Kalko EKV (2004) Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos 105:209–220CrossRefGoogle Scholar
  22. Gibbs BHK, Rausch L, Munger J et al (2015) Brazil’s soy moratorium. Science 347:377–378.  https://doi.org/10.1126/science.aaa0181 CrossRefPubMedGoogle Scholar
  23. Gordon A, Simondson D, White M et al (2009) Integrating conservation planning and landuse planning in urban landscapes. Landsc Urban Plan 91:183–194.  https://doi.org/10.1016/j.landurbplan.2008.12.011 CrossRefGoogle Scholar
  24. Gorresen PM, Willig MR, Strauss RE (2005) Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecol Appl 15:2126–2136.  https://doi.org/10.1890/04-0532 CrossRefGoogle Scholar
  25. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19.  https://doi.org/10.18637/jss.v022.i07 CrossRefGoogle Scholar
  26. Grenyer R, Orme CDL, Jackson SF et al (2006) Global distribution and conservation of rare and threatened vertebrates. Nature 444:93–96.  https://doi.org/10.1038/nature05237 CrossRefPubMedGoogle Scholar
  27. Henle K, Davies KF, Kleyer M et al (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251.  https://doi.org/10.1023/B:BIOC.0000004319.91643.9e CrossRefGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  29. Holt RD (2006) Emergent neutrality. Trends Ecol Evol 21:531–533CrossRefPubMedGoogle Scholar
  30. Jones G, Jacobs DS, Kunz TH et al (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115.  https://doi.org/10.3354/esr00182 CrossRefGoogle Scholar
  31. Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19:707–713CrossRefGoogle Scholar
  32. Kunz TH, de Torrez EB, Bauer D et al (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38.  https://doi.org/10.1111/j.1749-6632.2011.06004.x CrossRefPubMedGoogle Scholar
  33. Lapola DM, Schaldach R, Alcamo J et al (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci USA 107:3388–3393.  https://doi.org/10.1073/pnas.0907318107 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lapola DM, Martinelli LA, Peres CA et al (2013) Pervasive transition of the Brazilian land-use system. Nat Clim Chang 4:27–35.  https://doi.org/10.1038/nclimate2056 CrossRefGoogle Scholar
  35. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613.  https://doi.org/10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  36. Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol 70:966–979.  https://doi.org/10.1046/j.0021-8790.2001.00563.x CrossRefGoogle Scholar
  37. Loeuille N, Leibold MA (2008) Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. Am Nat 171:788–799.  https://doi.org/10.1086/587745 CrossRefPubMedGoogle Scholar
  38. López-González C, Presley SJ, Lozano A, Stevens RD, Higgins CL (2015) Ecological biogeography of Mexican bats: the relative contributions of habitat heterogeneity, beta diversity, and environmental gradients to species richness and composition patterns. Ecography (Cop) 38:261–272.  https://doi.org/10.1111/ecog.00813 CrossRefGoogle Scholar
  39. Louzada NSV, do Lima AC, Pessôa leila M et al (2015) New records of phyllostomid bats for the state of Mato Grosso and for the Cerrado of Midwestern Brazil (Mammalia: Chiroptera). Check List 11:1644.  https://doi.org/10.15560/11.3.1644 CrossRefGoogle Scholar
  40. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.  https://doi.org/10.1038/35012251 CrossRefPubMedGoogle Scholar
  41. Medellín RA, Equihua M, Amin MA (2000) Bat diversity and abundance as indicators of disturbance in neotropical rainforests. Conserv Biol 14:1666–1675CrossRefGoogle Scholar
  42. Meyer CFJ, Kalko EKV (2008) Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J Biogeogr 35:1711–1726.  https://doi.org/10.1111/j.1365-2699.2008.01916.x CrossRefGoogle Scholar
  43. Meyer CFJ, Fründ J, Lizano WP, Kalko EKV (2008) Ecological correlates of vulnerability to fragmentation in neotropical bats. J Appl Ecol 45:381–391.  https://doi.org/10.1111/j.1365-2664.2007.01389.x CrossRefGoogle Scholar
  44. Ministerio do Meio Ambiente (MMA) (2009) Florestas do Brasil em Resumo. MMA, FederalGoogle Scholar
  45. Moilanen A (2007) Landscape Zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol Conserv 134:571–579.  https://doi.org/10.1016/j.biocon.2006.09.008 CrossRefGoogle Scholar
  46. Moilanen A, Franco AMA, Early RI et al (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc R Soc 272:1885–1891.  https://doi.org/10.1098/rspb.2005.3164 CrossRefGoogle Scholar
  47. Moilanen A, Meller L, Leppänen J et al (2012) Zonation spatial conservation planning framework and software v. 3.1, user manualGoogle Scholar
  48. Muylaert RL, Stevens RD, Ribeiro MC (2016) Threshold effect of habitat loss on bat richness in cerrado-forest landscapes. Ecol Appl 26:1854–1867.  https://doi.org/10.1890/15-1757.1 CrossRefPubMedGoogle Scholar
  49. Nóbrega CC, De Marco PJ (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505.  https://doi.org/10.1111/j.1472-4642.2011.00749.x CrossRefGoogle Scholar
  50. Nogueira MR, de Lima IP, Moratelli R et al (2014) Checklist of Brazilian bats, with comments on original records. Check List 10:808–821.  https://doi.org/10.15560/10.4.808 CrossRefGoogle Scholar
  51. Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24.  https://doi.org/10.1016/j.tree.2003.09.010 CrossRefPubMedGoogle Scholar
  52. Overbeck GE, Vélez-Martin E, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib.  https://doi.org/10.1111/ddi.12380 Google Scholar
  53. Paglia AP, Fonseca GA, Rylands AB et al (2012) Lista anotada dos mamíferos do Brasil. Occas Pap Conserv Biol 6:1–76Google Scholar
  54. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117.  https://doi.org/10.1111/j.1365-2699.2006.01594.x CrossRefGoogle Scholar
  55. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  56. Pine RH, Bishop IR, Jackson RL (1970) Preliminary list of mammals of the Xavantina-Cachimbo expedition (Central Brazil). Trans R Soc Trop Med Hyg 64:668–670.  https://doi.org/10.1016/0035-9203(70)90003-9 CrossRefPubMedGoogle Scholar
  57. Platts PJ, Ahrends A, Gereau RE et al (2010) Can distribution models help refine inventory-based estimates of conservation priority? A case study in the Eastern Arc forests of Tanzania and Kenya. Divers Distrib 16:628–642.  https://doi.org/10.1111/j.1472-4642.2010.00668.x CrossRefGoogle Scholar
  58. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  59. Raxworthy CJ, Martinez-Meyer E, Horning N et al (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841.  https://doi.org/10.1038/nature02205 CrossRefPubMedGoogle Scholar
  60. Razgour O, Hanmer J, Jones G (2011) Using multi-scale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biol Conserv 144:2922–2930.  https://doi.org/10.1016/j.biocon.2011.08.010 CrossRefGoogle Scholar
  61. Rebelo H, Jones G (2010) Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J Appl Ecol 47:410–420.  https://doi.org/10.1111/j.1365-2664.2009.01765.x CrossRefGoogle Scholar
  62. Rocchini D, Hortal J, Szabolcs L et al (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226.  https://doi.org/10.1177/0309133311399491 CrossRefGoogle Scholar
  63. Rocha PA, Ferrari SF, Feijó A, Gouveia SF (2015) Zoogeography of south American forest-dwelling bats: disjunct distributions or sampling deficiencies? PLoS ONE 10:e0133276.  https://doi.org/10.1371/journal.pone.0133276 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rocha R, Lópes-Baucells A, Farneda FZ et al (2016) Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landsc Ecol.  https://doi.org/10.1007/s10980-016-0425-3 Google Scholar
  65. Silva JF, Fariñas MR, Felfili JM, Klink CA (2006) Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J Biogeogr 33:536–548.  https://doi.org/10.1111/j.1365-2699.2005.01422.x CrossRefGoogle Scholar
  66. Smart SM, Thompson K, Marrs RH et al (2006) Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc Biol Sci 273:2659–2665.  https://doi.org/10.1098/rspb.2006.3630 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123.  https://doi.org/10.1111/j.1461-0248.2007.01107.x CrossRefPubMedGoogle Scholar
  68. Trindade-Filho J, Loyola RD (2011) Performance and consistency of indicator groups in two biodiversity hotspots. PLoS ONE 6:e19746.  https://doi.org/10.1371/journal.pone.0019746 CrossRefPubMedPubMedCentralGoogle Scholar
  69. van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop) 39:542–552.  https://doi.org/10.1111/ecog.01509 CrossRefGoogle Scholar
  70. Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–24.  https://doi.org/10.1111/j.1366-9516.2005.00143.x CrossRefGoogle Scholar
  71. Willig MR, Presley SJ, Owen RD, López-González C (2000) Composition and structure of bat assemblages in Paraguay: a subtropical-temperate interface. J Mammal 81:386–401.  https://doi.org/10.1644/1545-1542(2000)081<0386:CASOBA>2.0.CO;2 Google Scholar
  72. Wisz MS, Hijmans RJ, Li J et al (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773.  https://doi.org/10.1111/j.1472-4642.2008.00482.x CrossRefGoogle Scholar
  73. Zortéa M, Alho CJR (2008) Bat diversity of a Cerrado habitat in central Brazil. Biodivers Conserv 17:791–805.  https://doi.org/10.1007/s10531-008-9318-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Daiana Cardoso Silva
    • 1
  • Thiago Bernardi Vieira
    • 2
  • Joaquim Manoel da Silva
    • 3
  • Karina de Cassia Faria
    • 3
  1. 1.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade do Estado de Mato GrossoNova XavantinaBrazil
  2. 2.Faculdade de Ciências BiológicasUniversidade Federal do ParáAltamiraBrazil
  3. 3.Faculdade de Ciências Agrárias, Biológicas e Sociais AplicadasUniversidade do Estado de Mato GrossoNova XavantinaBrazil

Personalised recommendations