Biodiversity and Conservation

, Volume 27, Issue 3, pp 695–717 | Cite as

Patterns and drivers of wild bee community assembly in a Mediterranean IUCN important plant area

  • Achik Dorchin
  • Amots Dafni
  • Ido Izhaki
  • Yuval Sapir
  • Nicolas J. Vereecken
Original Paper


Recent reports of pollinator declines have stirred interest in investigating the impacts of habitat exploitation on the conservation of pollinator and plant communities. An important prerequisite to tailor conservation action is to understand the drivers and patterns of species-rich communities, and how they change in space and time during a whole season. To account for this, we surveyed wild bees and flowering plants using standardized transects in 11 natural habitat fragments of an IUCN important plant area along the coast of Israel. We used phylogeny- and taxon-based methods of community structure analyses to study the assembly processes of bee communities, and investigated the effects of several landscape parameters on bee diversity using generalized linear models (GLMs). Our results illustrate that natural habitat sites comprised significantly higher species richness compared to disturbed habitat sites, and show that even the smallest habitat fragments harbored unique bee assemblages, with significant species replacement (turnover) found in both space and time. Our GLMs indicated that flower diversity, and semi-natural habitat within 500 m of habitat fragments were important drivers of bee diversity, but we found no evidence for a species—area relationship among sites. Finally, we document a case of phylogenetic overdispersion despite low species richness, which highlights the importance of accounting for phylogenetic diversity rather than only species richness to reach a more fine-grained understanding of pollinator diversity. This, in turn, is pivotal to developing conservation actions to protect these essential pollinators and their interaction with rare and endemic plant species in this highly threatened ecosystem.


Anthropogenic disturbance Beta diversity Co-occurrence Fragmentation Habitat loss Phylogenetic diversity Pollinator conservation 



We are grateful to H. H. Dathe, A. W. Ebmer, M. Kuhlmann, D. Michez, A. Müller, C. O’Toole, S. Patiny, A. Pauly, C. Praz, S. Risch, M. Schwarz, and M. Terzo for their invaluable help with the identification of bees. We thank B. Segal, A. Kerry, and N. Dorchin for help in fieldwork, Lior Blank for preparation of the map in Fig. 1a, and four anonymous reviewers for helpful comments on previous versions of the manuscript. This work was supported by the Israel Science Foundation (ISF), the Dorothy and Henk Schussheim’s Fund for Ecological Research in Mt. Carmel, The Israel Nature and Parks Authority (NPA), and the Nekudat Hen program for promoting agricultural—ecological projects.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10531_2017_1459_MOESM1_ESM.docx (506 kb)
Supplementary material 1 (DOCX 506 kb)
10531_2017_1459_MOESM2_ESM.docx (2.2 mb)
Supplementary material 2 (DOCX 2214 kb)
10531_2017_1459_MOESM3_ESM.docx (512 kb)
Supplementary material 3 (DOCX 513 kb)


  1. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot 103:1579–1588CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C, Dunning LT, Gonzalez M-A, Molino J-F, Sabatier D, Savolainen V, Chave J (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100:690–701CrossRefGoogle Scholar
  3. Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci USA 110:4656–4660CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  5. Baselga A, Orme D, Villéger S, De Bortoli J, Leprieur F (2013) Betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.3.
  6. Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, New York, pp 88–104CrossRefGoogle Scholar
  7. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemueller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354CrossRefPubMedGoogle Scholar
  8. Bird E (2005) Eolianite. In: Schwartz ML (ed) Encyclopedia of coastal science. Springer, Dordrecht, pp 426–428.
  9. Bjornstad ON (2016) ncf: spatial nonparametric covariance functions. R package version 1.1-7.
  10. Bommarco R, Lindborg R, Marini L, Öckinger E (2014) Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers Distrib 20:591–599CrossRefGoogle Scholar
  11. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  12. Cane JH, Minckley RL, Kervin LJ, Roulston TH, Williams NM (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16:632–644CrossRefPubMedGoogle Scholar
  13. Carboni M, Carranza ML, Acosta A (2009) Assessing conservation status on coastal dunes: A multiscale approach. Landsc Urban Plan 91:17–25CrossRefGoogle Scholar
  14. Chen H (2014) VennDiagram: generate high-resolution Venn and Euler plots. R package version 1.6.9.
  15. Dan J (1984) The soils of the coastal plain. Rotem 13:31–56 (in Hebrew)Google Scholar
  16. Danforth BN, Sipes S, Fang J, Brady SG (2006) The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci USA 103:15118–15123CrossRefPubMedPubMedCentralGoogle Scholar
  17. Danforth BN, Cardinal S, Praz C, Almeida EAB, Michez D (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Ann Rev Entomol 58:57–78CrossRefGoogle Scholar
  18. Dorchin A, Filin I, Izhaki I, Dafni A (2012) Movement patterns of solitary bees in a threatened fragmented habitat. Apidologie 44:90–99CrossRefGoogle Scholar
  19. Eastman JM, Paine CET, Hardy OJ (2011) spacodiR: Structuring of phylogenetic diversity in ecological communities. Bioinformatics 27:2437–2438CrossRefPubMedGoogle Scholar
  20. Eig A (1939) The vegetation of the light soils belt of the coastal plain of Palestine. Palest J Bot 1:255–308Google Scholar
  21. Ellis EC, Klein GK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr 19:589–606Google Scholar
  22. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  23. Finkl CW (2005) Coastal solis. In: Schwartz ML (ed) Encyclopedia of Coastal Science. Springer, Dordrecht, pp 278–302.
  24. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760CrossRefPubMedGoogle Scholar
  25. Fox J, Weisberg S (2011) An {R} Companion to Applied Regression, 2nd edn. Thousand Oaks, Sage.
  26. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764CrossRefGoogle Scholar
  27. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621CrossRefGoogle Scholar
  28. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. CrossRefPubMedGoogle Scholar
  29. Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hardy OJ, Couteron P, Munoz F, Ramesh BR, Pélissier R (2012) Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecol Biogeogr 21:1007–1016CrossRefGoogle Scholar
  31. Helmus MR, Keller WB, Paterson MJ, Yan ND, Cannon CH, Rusak JA (2010) Communities contain closely related species during ecosystem disturbance. Ecol Lett 13:162–174CrossRefPubMedGoogle Scholar
  32. Hoiss B, Krauss J, Potts SG, Roberts S, Steffan-Dewenter I (2012) Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc R Soc London B 279:4447–4456CrossRefGoogle Scholar
  33. Hopfenmüller S, Steffan-Dewenter I, Holzschuh A (2014) Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS ONE 9:e104439CrossRefPubMedPubMedCentralGoogle Scholar
  34. IMS (2012) Israel Meteorological Service.
  35. Jauker F, Diekoetter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24:547–555CrossRefGoogle Scholar
  36. Jetz W, Thomas GH, Joy JB, Redding DW, Hartmann K, Mooers AO (2014) Global distribution and conservation of evolutionary distinctness in birds. Curr Biol 24:919–930CrossRefPubMedGoogle Scholar
  37. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  38. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313CrossRefPubMedGoogle Scholar
  39. Krauss J, Alfert T, Steffan-Dewenter I (2009) Habitat area but not habitat age determines wild bee richness in limestone quarries. JAppl Ecol 46:194–202CrossRefGoogle Scholar
  40. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kuhlmann M, Ascher JS, Dathe HH, Ebmer AW, Hartmann P, Michez D, Müller A, Patiny S, Pauly A, Praz C, Rasmont P, Risch S, Scheuchl E, Schwarz M, Terzo M, Williams PH, Amiet F, Baldock D, Berg Ø, Bogusch P, Calabuig I, Cederberg B, Gogala A, Gusenleitner F, Josan Z, Madsen HB, Nilsson A, Ødegaard F, Ortiz-Sanchez J, Paukkunen J, Pawlikowski T, Quaranta M, Roberts SPM, Sáropataki M, Schwenninger H-R, Smit J, Söderman G, Tomozei B (2017) Checklist of the Western Palaearctic bees (Hymenoptera: Apoidea: Anthophila). Accessed 10 Sept 2017
  42. Kutiel P (2001) Conservation and management of the Mediterranean coastal sand dunes in Israel. J Coast Conserv 7:183–192CrossRefGoogle Scholar
  43. Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecol Biogeogr 23:1324–1334CrossRefGoogle Scholar
  44. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefPubMedGoogle Scholar
  45. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  46. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  47. McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015CrossRefPubMedGoogle Scholar
  48. Michener CD (2007) The bees of the World, 2nd edn. The John Hopkins University Press, BaltimoreGoogle Scholar
  49. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: health synthesis. Island Press, WashingtonGoogle Scholar
  50. Minckley RL (2013) Maintenance of richness despite reduced abundance of desert bees (Hymenoptera: Apiformes) to persistent grazing. Insect Conserv Divers 7:263–273CrossRefGoogle Scholar
  51. Murray TE, Kuhlmann M, Potts SG (2009) Conservation ecology of bees: populations, species and communities. Apidologie 40:211–236CrossRefGoogle Scholar
  52. Neokosmidis L, Tscheulin T, Devalez J, Petanidou T (2016) Landscape spatial configuration is a key driver of wild bee demographics. Insect Sci. PubMedGoogle Scholar
  53. Nielsen A, Steffan-Dewenter I, Westphal C, Messinger O, Potts SG, Roberts SPM, Settele J, Szentgyörgyi H, Vaissière BE, Vaitis M, Woyciechowski M, Bazos I, Biesmeijer JC, Bommarco R, Kunin WE, Tscheulin T, Lamborn E, Petanidou T (2011) Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol Res 26:969–983CrossRefGoogle Scholar
  54. Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35:259–267CrossRefGoogle Scholar
  55. Oksanen, J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0-4.
  56. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  57. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  58. Pisanty G, Mandelik Y (2015) Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees. Ecol Appl 25:742–752CrossRefPubMedGoogle Scholar
  59. Polak G (1984) The vegetation on Hamra and Kurkar at present compared to the 1930s. Rotem 13:21–31 (in Hebrew)Google Scholar
  60. Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642CrossRefGoogle Scholar
  61. Potts SG, Petanidou T, Roberts S, O’Toole C, Hulbert A, Willmer P (2006) Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biol Conserv 129:519–529CrossRefGoogle Scholar
  62. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: drivers and impacts. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  63. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  64. Rollin O, Bretagnolle V, Fortel L, Guilbaud L, Henry M (2015) Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodivers Conserv 24:1195–1214CrossRefGoogle Scholar
  65. Roubik DW (2001) Ups and downs in pollinator populations: when is there a decline? Conserv Ecol 5:2CrossRefGoogle Scholar
  66. RStudio Team (2015). RStudio: integrated development for R. RStudio Inc., Boston.
  67. Sanchez G (2014) Arcdiagram: plot pretty arc diagrams. R package version 0.1.11.
  68. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508CrossRefPubMedGoogle Scholar
  69. Shimodaira H (2004) Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann Stat 32:2616–2641CrossRefGoogle Scholar
  70. Shmida A (1981) Mediterranean vegetation in California and Israel: similarities and differences. Israel J Bot 30:105–123Google Scholar
  71. Shmida A (1984) Endemism in the flora of Israel. Botanische Jahrbücher für Systematik 104:537–567Google Scholar
  72. Shmida A, Pollak G (2011) Israel. In: Radford EA, Catullo G, de Montmollin B (ed) Important plant areas of the south and east Mediterranean region: priority sites for conservation. IUCN Gland, Gland pp 48–52Google Scholar
  73. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80CrossRefPubMedGoogle Scholar
  74. Survey of Israel (2006) The uniform code alignment, the National GIS of Israel. Version 6.44. Tel Aviv, Israel. (In Hebrew)Google Scholar
  75. Suzuki R, Shimodaira H (2015) pvclust: hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 2.0-0.
  76. Swenson NG (2013) The assembly of tropical tree communities—the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36:264–276CrossRefGoogle Scholar
  77. Sydenham MAK, Moe SR, Totland Ø, Eldegard K (2015) Does multi-level environmental filtering determine the functional and phylogenetic composition of wild bee species assemblages? Ecography 38:140–153CrossRefGoogle Scholar
  78. Tscheulin T, Neokosmidis L, Petanidou T, Settele J (2011) Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bull Entomol Res 101:557–564CrossRefPubMedGoogle Scholar
  79. Vereecken NJ, Dorchin A, Dafni A, Hötling S, Schulz S, Watts S (2013) A pollinators’ eye view of a shelter mimicry system. Ann Bot 111:1155–1165CrossRefPubMedPubMedCentralGoogle Scholar
  80. Watts S, Sapir Y, Segal B, Dafni A (2013) The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators. Ann Bot 111:395–407CrossRefPubMedGoogle Scholar
  81. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155CrossRefPubMedGoogle Scholar
  82. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  83. Westphal C, Bommarco R, Carre G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SPM, Szentgyoergyi H, Tscheulin T, Vaissiere BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671CrossRefGoogle Scholar
  84. Williams NM, Minckley RL, Silveira FA (2001) Variation in native bee faunas and its implications for detecting community changes. Conserv Ecol 5:7CrossRefGoogle Scholar
  85. Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291CrossRefGoogle Scholar
  86. Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223CrossRefPubMedGoogle Scholar
  87. Yom-Tov Y, Mendelssohn H (1988) Changes in the distribution and abundance of vertebrates in Israel during the 20th century. In: Yom-Tov Y, Tchernov E (eds) The zoogeography of Israel. Junk Publishers, Dordrecht, pp 515–547Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Evolutionary and Environmental BiologyUniversity of HaifaHaifaIsrael
  2. 2.Institute of EvolutionUniversity of HaifaHaifaIsrael
  3. 3.The Botanical Garden, Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel AvivIsrael
  4. 4.Agroecology & Pollination Group, Landscape Ecology and Plant Production Systems (LEPPS/EIB)Université libre de Bruxelles (ULB)BrusselsBelgium
  5. 5.Department of ZoologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations