Biodiversity and Conservation

, Volume 25, Issue 14, pp 2965–2986 | Cite as

Diatom flora in Mediterranean streams: flow intermittency threatens endangered species

  • Elisa Falasco
  • Elena Piano
  • Francesca Bona
Original Paper


In the context of global environmental changes, Mediterranean rivers are considered highly endangered. Temporal and spatial increases of the dry stretches during the summer lead to the loss of river tridimensional connectivity, which represents a major threat for freshwater biodiversity. In this study, we aimed at exploring the response of diatom communities to summer droughts by analyzing taxonomical composition, specific ecological requirements, ecological guilds and percentages of endangered species. The evolution of diatom communities was monitored under both intermediate and intermittent flows, with traditional and innovative sampling procedures, i.e. collecting diatoms from transects and microhabitats, respectively. Microhabitats differed in terms of water velocity, substrate, isolation and presence of macrophytes. Diatom flora was mainly composed of β-mesasoprobous taxa. We highlighted an increase of species considered as aerophilous and planktonic in sites characterized by intermittent flow. In general, ecological guilds did not respond to hydrological disturbance as expected. Statistical models identified the maintenance of a minimum of 0.20 m/s flow velocity as the main factor influencing the abundance of endangered species. Conversely, flow instability, lentification and habitat fragmentation represented the major threats for endangered species. In conclusion, diatoms can provide useful information to improve river management practices when faced with an increasing water scarcity scenario. Water stability and river habitat heterogeneity strongly favor the presence of endangered diatom species. In the absence of these conditions, isolated pools surrounded by dry riverbed are very important habitats to be preserved, representing the only refugia for benthic diatom communities during summer.


Red list Bacillariophyceae Hydrological instability Pools 



We would like to thank Marco Bodon and Anna Risso of ARPAL for providing useful data on Ligurian rivers and for their valuable help in scheduling the work. We also thank Sabrina Mossino, Marta Franchino, Alberto Doretto, Giacomo Bozzolino, Leonardo Manzari and Irene Conenna for their help in the fieldwork and in the laboratory analyses. We thank Dr. Radhika Srinivasan for language editing. We are grateful for the constructive criticisms of two anonymous referees, whose comments greatly improved this article. This work is part of the research fellowship won by Dr. Elisa Falasco in 2014 “Diatom communities and droughts in Mediterranean rivers”, cofounded by the University of Turin and by the Local Research Grant 60 % 2014 assigned to Francesca Bona.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10531_2016_1213_MOESM1_ESM.pdf (102 kb)
Stream characterization in terms of hydroecoregion, main geological composition and percentage of urban land use. Further details on chemical-physical parameters (mean ± SD) detected during the sampling seasons (SPRING and SUMMER) are also displayed. (PDF 102 kb)
10531_2016_1213_MOESM2_ESM.xlsx (41 kb)
Complete checklist of all the taxa detected in the samples. CODE = taxon code from OMNIDIA 5.3 with database 2015. Ecological requirements include species preferences in terms of saprobity, salinity, moisture (Van dam et al. 1994) and current velocity (Denys 1991). Saprobity: 1 = oligosaprobous; 2 = β-mesosaprobous; 3 = α-mesosaprobous; 4 = α-meso/polysaprobous; 5 = polysaprobous. Salinity: 1 = fresh (Cl <100 mg/l); 2 = fresh-brackish (Cl <500 mg/l); 3 = brackish-fresh (Cl = 500–1000 mg/l); 4 = brackish (Cl = 1000–5000 mg/l). Moisture: 1 = never or very rarely occurring outside water bodies; 2 = mainly occurring in water bodies, sometimes on wet places; 3 = mainly occurring in water bodies, also rather regularly on wet and moist places; 4 = mainly occurring on wet and moist or temporarily dry places; 5 = nearly exclusively occurring outside water bodies. Current: 0 = unknown, 1 = irrelevant, 2 = rheobiontic, 3 = rheophilous, 4 = indifferent, 5 = limnophilous. Life forms and ecological guilds follow the classification proposed in Rimet and Bouchez (2012); for species not included in that list, we inferred data to the closest taxon in terms of taxonomy and ecology. Life forms, Planktonic: 0 = non planktonic; 1 = planktonic. Colonial: 0 = solitary; 1 = colonial. Mucous tubule colony: 0 = other type of colony; 1 = mucous tubule. Adnate: 0 = not adnate; 1 = adnate. Peduncolate: 0 = not peduncolate; 1 = peduncolate. Pioneer: 0 = not pioneer; 1 = pioneer. Ecological guilds, low profile: 0 = not low profile, 1 = low profile; high profile 0 = not high profile, 1 = high profile; motile: 0 = not motile, 1 = motile. Red List column refers to conservation status defined in (Lange-Bertalot and Steindorf 1996): 1 = threatened with extinction; 2 = severely endangered; 3 = endangered; D = data scarce; G = probably endangered; R = rare; V = decreasing; * = at present not considered threatened; ** = surely not threatened. In the last columns, we display the presence or absence of each taxon during SPRING and SUMMER and in upstream (UP) and downstream (DW) sites. (XLSX 41 kb)


  1. APAT-IRSA CNR (2003) Metodi analitici per le acque, vol 1. Rapporti 29/2003. APAT: Roma, pp 342Google Scholar
  2. Bey MY, Ector L (2013) Atlas des diatomées des cours d’eau de la region Rhône-Alpes. Tome 1–6. Direction régionale de l’environnement, de l’aménagegement et du logement Rhône-Alpes, pp 1182Google Scholar
  3. Blanco S, Ector L (2009) Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwig 88:347–422. doi: 10.1127/0029-5035/2009/0088-0347 CrossRefGoogle Scholar
  4. Blanco S, Ector L, Huck V, Monnier O, Cauchie HM, Hoffmann L, Bécares E (2008) Diatom assemblages and water quality assessment in the Duero basin (NW Spain). Belg J Bot 141:39–50. doi: 10.2307/20794650 Google Scholar
  5. Blanco S, Cejudo-Figueiras C, Álvarez-Blanco I, Bécares E, Hoffmann L, Ector L (2010) Atlas de las diatomeas de la cuenca del duero. Universidad de León-Área de Publicaciones, León, p 386Google Scholar
  6. Boix D, García-Berthou E, Gascón S, Benejam L, Tornés E, Sala J, Benito J, Munné A, Solà C, Sabater S (2010) Response of community structure to sustained drought in Mediterranean rivers. J Hydrol 383:135–146. doi: 10.1016/j.jhydrol.2010.01.014 CrossRefGoogle Scholar
  7. Bonada N, Rieradevall M, Prat N, Resh VH (2006) Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of Northern California. J North Am Benthol Soc 25(1):32–43. doi: 10.1899/0887-3593 CrossRefGoogle Scholar
  8. Cantonati M (1998) Le sorgenti del Parco Adamello-Brenta. In: Cantonati M (ed) Parco Documenti, Parco Adamello-Brenta, Strembo (TN), pp 177Google Scholar
  9. Coste M, Ector L (2000) Diatomées invasives exotiques ou rares en France: principales observations effectuées au cours des dernières décennies. Syst Geogr Plant 70:373–400. doi: 10.2307/3668651 CrossRefGoogle Scholar
  10. Cuttelod A, Garcia N, Malak DA, Temple HJ, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié JC, Hilton-Taylor C, Stuart S (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, Switzerland, p 184Google Scholar
  11. De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. doi: 10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  12. Delgado C, Ector L, Novais MH, Blanco S, Hoffmann L, Pardo I (2013) Epilithic diatoms of springs and spring–fed streams in Majorca Island (Spain) with the description of a new diatom species Cymbopleura margalefii sp. nov. Fottea 13:87–104. doi: 10.5507/fot.2013.009 CrossRefGoogle Scholar
  13. Denys L (1991) A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements, vol. 1. Professional Paper. Geological Survey of Belgium, 1991/02 (246). Geologische Dienst van België: Brussels, pp 41Google Scholar
  14. Denys L (2000) Historical distribution of ‘red list diatoms’ (Bacillariophyceae) in Flanders (Belgium). Syst Geogr Plant 70:409–420. doi: 10.2307/3668653 CrossRefGoogle Scholar
  15. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi: 10.1017/S1464793105006950 CrossRefPubMedGoogle Scholar
  16. Ector L, Wetzel CE, Novais MH, Guillard D (2015) Atlas des diatomées des rivières des Pays de la Loire et de la Bretagne. DREAL Pays de la Loire, Nantes, p 649Google Scholar
  17. Elias CL, Calapez AR, Almeida SFP, Feio MJ (2015) From perennial to temporary streams: an extreme drought as a driving force of freshwater communities’ traits. Mar Freshwater Res 66:469–480. doi: 10.1071/MF13312 CrossRefGoogle Scholar
  18. European committee for standardization (2003) Water quality guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. European standard EN 13946. European committee for standardization: Brussels, pp 14Google Scholar
  19. Falasco E, Bona F (2011) Diatom community biodiversity in an Alpine protected area: a study in the Maritime Alps Natural Park. J Limnol 70:157–167. doi: 10.3274/JL11-70-2-01 CrossRefGoogle Scholar
  20. Falasco E, Bona F (2013) Recent findings regarding non-indigenous or poorly known diatom taxa in North-Western Italian rivers. J Limnol 72:35–51. doi: 10.4081/jlimnol.2013.e4 CrossRefGoogle Scholar
  21. Falasco E, Piano E, Bona F (2013) Guida al riconoscimento e all’ecologia delle principali diatomee fluviali dell’Italia nord occidentale. Cent Italiano Stud Biol Ambient 27:292Google Scholar
  22. Feio MJ, Aguiar FC, Almeida SFP, Ferreira J, Ferreira MT, Elias C, Serra SRS, Buffagni A, Cambra J, Chauvin C, Delmas F, Dörflinger G, Erba S, Flor N, Ferréol M, Germ M, Mancini L, Manolaki P, Marcheggiani S, Minciardi MR, Munné A, Papastergiadou E, Prat N, Puccinelli C, Rosebery J, Sabater S, Ciadamidaro S, Tornés E, Tziortzis I, Urbani G, Vieira C (2014) Least disturbed condition for European Mediterranean rivers. Sci Total Environ 476:745–756CrossRefPubMedGoogle Scholar
  23. Gomà J, Ortiz R, Cambra J, Ector L (2004) Water evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie Milieu 54:81–90. doi: 10.1016/j.scitotenv.2013.05.056 Google Scholar
  24. Hofmann G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süßwasser-Benthos von Mitteleuropa. Koeltz Scientific Books, Königstein, p 908Google Scholar
  25. Krammer K (1997a) Die cymbelloiden Diatomeen. Teil 1. Allgemeines und Encyonema Part. Bibliotheca diatomologica 36, pp 382Google Scholar
  26. Krammer K (1997b) Die cymbelloiden Diatomeen. Teil 2. Encyonema part, Encyonopsis and Cymbellopsis. Bibliotheca diatomologica 37, pp 469Google Scholar
  27. Krammer K (2002) Cymbella. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 3. ARG Gantner Verlag KG, Rugell, p 584Google Scholar
  28. Krammer K (2003) Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 4. ARG Gantner Verlag KG, Rugell, p 530Google Scholar
  29. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae Teil: naviculaceae 1. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Stuttgart, p 876Google Scholar
  30. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae Teil: bacillariaceae, epithemiaceae, surirellaceae 2. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Stuttgart, p 610Google Scholar
  31. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae Teil: Centrales, Fragilariaceae, Eunotiaceae 3. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Stuttgart, p 598Google Scholar
  32. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae Teil: Achnanthaceae. Kritische Erg.anzungen zu Navicula (Lineolatae) und Gomphonema. 4. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 2. Gustav Fischer Verlag, Stuttgart, p 437Google Scholar
  33. Lange-Bertalot H (2001) Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. In: Lange-Bertalot H (ed) Diatoms of Europe 2. ARG Gantner Verlag KG, Rugell, p 526Google Scholar
  34. Lange-Bertalot H, Metzeltin D (1996) Indicators of oligotrophy. In: Lange-Bertalot H (ed) Iconographia diatomologica 2. Koeltz, Koenigstein, p 390Google Scholar
  35. Lange-Bertalot H, Steindorf A (1996) Rote liste der limnischen kieselalgen (Bacillariophyceae) Deutschlands. Schr Veg 28:633–677Google Scholar
  36. Larson CA, Passy SI (2012) Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiol Ecol 80:352–362. doi: 10.1111/j.1574-6941.2012.01302.x CrossRefPubMedGoogle Scholar
  37. McQuoid MR, Hobson LA (1996) Diatom resting stages. J Phycol 32:889–902. doi: 10.1111/j.0022-3646.1996.00889.x CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefPubMedGoogle Scholar
  39. Novais MH, Morais MM, Rosado J, Dias LS, Hoffmann H, Ector L (2014) Diatoms of temporary and permanent watercourses in Southern Europe (Portugal). River Res Appl 30:1216–1232. doi: 10.1002/rra.2818 CrossRefGoogle Scholar
  40. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: community ecology Package. R package version 2.2-1.
  41. Pardo I, Álvarez M (2006) Comparison of resource and consumer dynamics in Atlantic and Mediterranean streams. Limnetica 25:271–286Google Scholar
  42. Passy SI (2002) Environmental randomness underlies morphological complexity of colonial diatoms. Funct Ecol 16:690–695. doi: 10.1046/j.1365-2435.2002.00671.x CrossRefGoogle Scholar
  43. Pérès F, Barthès A, Ponton E, Coste M, Ten-Hague L, Le-Cohu R (2012) Achnanthidium delmontii sp. nov., a new species from French rivers. Fottea 12:189–198. doi: 10.5507/fot.2012.014 CrossRefGoogle Scholar
  44. Ponander KC, Potapova MG (2007) Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): ecology, distribution and taxonomic notes. Limnol-Ecol Manag Inland Waters 37:227–241. doi: 10.1016/j.limno.2007.01.004 CrossRefGoogle Scholar
  45. Potapova MG, Charles DF (2007) Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol Indic 7:48–70. doi: 10.1016/j.ecolind.2005.10.001 CrossRefGoogle Scholar
  46. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  47. Reichardt E (1999) Zur Revision der Gattung Gomphonema. Die arten um G. affine/insigne, G. angustum/micropus, G. acuminatum sowie gomphonemoide diatomeen aus dem oberoligozän in böhmen. In: Lange-Bertalot H (ed.) Iconographia diatomologica 8, ARG Gantner Verlag KG, RugellGoogle Scholar
  48. Rimet F, Bouchez A (2012) Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl Manag Aquat Ecosyst 406:01–12. doi: 10.1051/kmae/2012018 CrossRefGoogle Scholar
  49. Robson BJ, Matthews TG (2004) Drought refuges affect algal recolonization in intermittent streams. River Res Appl 20:753–763. doi: 10.1002/rra.789 CrossRefGoogle Scholar
  50. Ros MD, Marín-Murcia JP, Aboal M (2009) Biodiversity of diatom assemblages in a Mediterranean semiarid stream: implications for conservation. Mar Freshwater Res 60:14–24. doi: 10.1071/MF07231 CrossRefGoogle Scholar
  51. Round FE, Crawford RM, Mann DG (1990) The diatoms. Cambridge University Press, Biology and morphology of the genera, p 760Google Scholar
  52. Sabater S, Sabater F, Armengol J (1988) Relationships between diatom assemblages and physico-chemical variables in the river ter (NE Spain). Int Rev Hydrobiol 73:171–179. doi: 10.1002/iroh.19880730204 CrossRefGoogle Scholar
  53. Sala OE, Chapin FS, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Ackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  54. Smucker NJ, Vis ML (2011) Contributions of habitat sampling and alkalinity to diatom diversity and distributional patterns in streams: implications for conservation. Biodivers Conserv 20:643–661. doi: 10.1007/s10531-010-9972-0 CrossRefGoogle Scholar
  55. Souffreau C, Vanormelingen P, Sabbe K, Vyverman W (2013) Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia 52:246–255. doi: 10.2216/12-087.1 CrossRefGoogle Scholar
  56. Tierno de Figueroa J, López-Rodríguez M, Fenoglio S, Sánchez-Castillo P, Fochetti R (2013) Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719:137–186. doi: 10.1007/s10750-012-1281-z CrossRefGoogle Scholar
  57. Tornés E, Ruhí A (2013) Flow intermittency decreases nestedness and specialization of diatom communities in Mediterranean rivers. Freshwater Biol 58:2555–2566. doi: 10.1111/fwb.12232 CrossRefGoogle Scholar
  58. van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  59. Van de Vijver B, Ector L, Beltrami ME, de Haan M, Falasco E, Hlúbiková D, Jarlman A, Kelly M, Novais MH, Wojtal AZ (2011) A critical analysis of the type material of Achnanthidium lineare W. SM. (Bacillariophyceae). Arch Hydrobiol Algological Stud 136:167–191. doi: 10.1127/1864-1318/2011/0136-0167 CrossRefGoogle Scholar
  60. Werum M, Lange-Bertalot H (2004) Diatoms in Springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. In: Lange-Bertalot H (ed) Iconographia diatomologica 13. Koeltz, Koenigstein, p 417Google Scholar
  61. Zuur AF, Ieno EN, Walker NJ, Savaliev AA, Smith GM (2009) Mixed effect models and extensions in ecology with R. Springer, Berlin, p 574CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly

Personalised recommendations