Biodiversity and Conservation

, Volume 25, Issue 6, pp 1107–1132 | Cite as

Restoring volume, diversity and continuity of deadwood in boreal forests

  • Anne-Maarit Hekkala
  • Anssi Ahtikoski
  • Marja-Leena Päätalo
  • Oili Tarvainen
  • Jouni Siipilehto
  • Anne Tolvanen
Original Paper


Restoration of boreal forests by emulating natural disturbances is used to bring back typical components of natural forests that are reduced by silvicultural management. The volume, diversity and continuity of deadwood are the most important factors determining the diversity of deadwood-dependent species. In a large-scale experiment consisting of 43 experimental stands and 15 controls we assessed how alternative restoration methods enhancing deadwood availability (felling and felling + burning with two levels of felling: 20 and 40 % of initial volume of living trees, and a storm treatment) would affect short- and long-term deadwood volume and diversity using 7-year deadwood measurements and simulation modelling. In short-term, restoration by felling + burning increased both the volume and diversity of deadwood, whereas felling only increased merely the volume of deadwood. The simulations of tree growth, mortality and wood decomposition indicated that in comparison to controls, felled and storm-treated stands have greater deadwood volumes up to 40 years and felled + burned stands more than 60 years after restoration. Our results suggest that felling with 20 % of initial tree volume does not harm the future deadwood continuity, whereas intensive burning may imperil the deadwood continuity in a stand level. In conclusion, restoration clearly speeds up the development of the deadwood volumes needed to host large portions of biodiversity, and burning is the most effective restoration method in short- and long term. In practice, several restoration methods could be used concurrently in the landscape to obtain the best results.


Burning CWD Decomposition Disturbance Deadwood enrichment Simulation 



The restoration was carried out as part of the Green Belt LIFE (LIFE04 NAT/FI/000078) project. Juha Siekkinen planned the restoration, Reijo Seppänen (deceased) and Kari Kukko-oja provided their methodological and ecological knowledge for the field measurements. Staff of the Finnish Forest Research Institute (presently Luke) and Metsähallitus carried out the restoration treatments and the field measurements. Jouni Karhu helped with vast amount of data. Irene Murtovaara finished the figures. Sebastian Seibold and three anonymous referees provided constructive suggestions on the manuscript. We warmly thank all the contributors to this research.


  1. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 5:169–211Google Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2013) Package lme4. Linear mixed effects models using Eigen and S4.Version 1.0-4.
  3. Boucher J, Azeria ET, Ibarzabal J, Hébert C (2012) Saproxylic beetles in disturbed boreal forests: temporal dynamics, habitat associations, and community structure. Ecoscience 19:328–343. doi: 10.2980/19-4-3503 CrossRefGoogle Scholar
  4. Boulanger Y, Sirois L, Hébert C (2011) Fire severity as a determinant factor of the decomposition rate of fire-killed black spruce in the northern boreal forest. Can J For Res 41:370–379CrossRefGoogle Scholar
  5. Bässler C, Müller J, Dziock F, Brandl R (2010) Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832CrossRefGoogle Scholar
  6. CBD (Convention on Biological Diversity) (2010) COP 10 DecisionX/2: strategic plan for biodiversity 2011–2020. Accessed May 2015
  7. Choi J, Lorimer C, Vanderwerker JM (2007) A simulation of the development and restoration of old-growth structural features in northern hardwoods. For Ecol Manag 249:204–220CrossRefGoogle Scholar
  8. Cyr D, Gauthier S, Bergeron Y, Carcaillet C (2009) Forest management is driving the eastern North American boreal forest outside its natural range of variability. Front Ecol Environ 7:519–524. doi: 10.1890/080088 CrossRefGoogle Scholar
  9. Department of Forest Resource Management (2014) Aktuella uppgifter om de svenska skogarna från Riksskogstaxeringen. Tema: Biologisk mångfald. SLU, UmeåGoogle Scholar
  10. Edenius L, Ericsson G, Kempe G et al (2011) The effects of changing land use and browsing on aspen abundance and regeneration: a 50-year perspective from Sweden: changing land use and aspen abundance. J Appl Ecol 48:301–309. doi: 10.1111/j.1365-2664.2010.01923.x CrossRefGoogle Scholar
  11. Eriksson A-M, Olsson J, Jonsson BG, Toivanen S, Edman M (2013) Effects of restoration fire on dead wood heterogeneity and availability in three Pinus sylvestris forests in Sweden. Silva Fennica 47, article id. 954Google Scholar
  12. Finnish Forest Research Institute (2013) Finnish statistical yearbook of forestry 2013. Sastamala. ISBN 978-951-40-2450-4 (PDF).
  13. Djupström LB, Perhans K, Weslien J et al (2010) Co-variation of lichens, bryophytes, saproxylic beetles and dead wood in Swedish boreal forests. Syst Biodivers 8:247–256. doi: 10.1080/14772001003786022 CrossRefGoogle Scholar
  14. Gao T, Nielsen AB, Hedblom M (2015) Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecol Indic 57:420–434. doi: 10.1016/j.ecolind.2015.05.028 CrossRefGoogle Scholar
  15. Gossner MM, Floren A, Weisser WW, Linsenmair KE (2013) Effect of dead wood enrichment in the canopy and on the forest floor on beetle guild composition. For Ecol Manag 302:404–413. doi: 10.1016/j.foreco.2013.03.039 CrossRefGoogle Scholar
  16. Gärdenfors U (2010) The 2010 red list of Swedish species. Artdatabanken, SLU, UppsalaGoogle Scholar
  17. Halme P, Allen KA, Auniņš A et al (2013) Challenges of ecological restoration: lessons from forests in northern Europe. Biol Conserv 167:248–256CrossRefGoogle Scholar
  18. Harmon ME, Franklin JF, Swansson FJ et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  19. Heinonen J (1994) Koealojen puustotunnusten laskentaohjelma KPL. Käyttöohje. Metsäntutkimuslaitoksen tiedonantoja 504 (In Finnish) Google Scholar
  20. Heikkala O, Martikainen P, Kouki J (2016a) Decadal effects of emulating natural disturbances in forest management on saproxylic beetle assemblages. Biol Conserv 194:39–47. doi: 10.1016/j.biocon.2015.12.002 CrossRefGoogle Scholar
  21. Heikkala O, Seibold S, Koivula M et al (2016b) Retention forestry and prescribed burning result in functionally different saproxylic beetle assemblages than clear-cutting. For Ecol Manag 359:51–58. doi: 10.1016/j.foreco.2015.09.043 CrossRefGoogle Scholar
  22. Hekkala A-M, Tarvainen O, Tolvanen A (2014) Dynamics of understory vegetation after restoration of natural characteristics in the boreal forests in Finland. For Ecol Manag 330:55–66. doi: 10.1016/j.foreco.2014.07.001 CrossRefGoogle Scholar
  23. Hökkä H (1997) Models for predicting growth and yield in drained peatland stands in Finland. In: Finnish Forest Research Institute Research Papers 651, pp 45–53Google Scholar
  24. Hökkä H, Salminen H (2006) Utilizing information on site hydrology in growth and yield modeling: peatland models in MOTTI stand simulator. In: Proceedings of the conference hydrology and management of forested wetlands, New Bern, pp 302–308Google Scholar
  25. Hynynen J (1993) Self-thinning models for even-aged stands of Pinus sylvestris, Picea abies and Betula pendula. Scand J For Res 8:326–336CrossRefGoogle Scholar
  26. Hynynen J, Ahtikoski A, Siitonen J, Sievänen R, Liski J (2005) Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For Ecol Manag 207:5–18CrossRefGoogle Scholar
  27. Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA system. In: Finnish Forest Research Institute, Research Papers 835, pp 1–116Google Scholar
  28. Hynynen J, Salminen H, Ahtikoski A, Huuskonen S, Ojansuu R, Siipilehto J, Lehtonen M, Eerikäinen K (2015) Long-term impacts of forest management on biomass supply and forest resource development: a scenario analysis for Finland. Eur J For Res 134:415–431CrossRefGoogle Scholar
  29. Hägglund R, Hekkala A-M, Hjältén J, Tolvanen A (2015) Positive effects of ecological restoration on rare and threatened flat bugs (Heteroptera: Aradidae). J Insect Conserv 19:1089–1099. doi: 10.1007/s10841-015-9824-z CrossRefGoogle Scholar
  30. Jacobsen RM, Birkemoe T, Sverdrup-Thygeson A (2015) Priority effects of early successional insects influence late successional fungi in dead wood. Ecol Evol 5:4896–4905. doi: 10.1002/ece3.1751 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johnstone JF, Chapin FS III, Foote S, Kemmett S, Price K, Viereck L (2004) Decadal observations of tree regeneration following fire in boreal forests. Can J For Res 34:267–273. doi: 10.1139/x03-183 CrossRefGoogle Scholar
  32. Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv 7:749–764CrossRefGoogle Scholar
  33. Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood –lessons fo dead wood management. Silva Fennica 39:289–309CrossRefGoogle Scholar
  34. Komonen A, Halme P, Jäntti M, Koskela T, Kotiaho JS, Toivanen T (2014a) Created substrates do not fully mimic natural substrates in restoration: the occurrence of polypores on spruce logs. Silva Fennica 48(1), id 980. doi: 10.14214/sf.980
  35. Komonen A, Kuntsi S, Toivanen T, Kotiaho JS (2014b) Fast but ephemeral effects of ecological restoration on forest beetle community. Biodivers Conserv 23:1485–1507. doi: 10.1007/s10531-014-0678-6 CrossRefGoogle Scholar
  36. Kunttu P, Junninen K, Kouki J (2015) Dead wood as an indicator of forest naturalness: a comparison of methods. For Ecol Manag 353:30–40. doi: 10.1016/j.foreco.2015.05.017 CrossRefGoogle Scholar
  37. Kuuluvainen T, Kalmari R (2003) Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Annales Botanici Fennici 40:401–413Google Scholar
  38. Kuznetsova A, Brockhoff PB, Christensen RH (2013) lmerTest: tests for random and fixed effects for linear mixed models (lmer objects of lme4 package. R package version 2.0-0.
  39. Laarmann D, Korjus H, Sims A, Kangur A, Stanturf JA (2013) Initial effects of restoring natural forest structures in Estonia. For Ecol Manag 304:303–311CrossRefGoogle Scholar
  40. Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Commun Inst For Fenn 108:1–74Google Scholar
  41. Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039CrossRefGoogle Scholar
  42. Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22CrossRefGoogle Scholar
  43. Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J (2000) Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol Conserv 94:199–209CrossRefGoogle Scholar
  44. Mäkelä A, del Río M, Hynynen J, Hawkins MJ, Reyer C, Soares P, van Oijen M, Tomé M (2012) Using stand-scale forest models for estimating indicators of sustainable forest management. For Ecol Manag 285:164–178. doi: 10.1016/j.foreco.2012.07.041 CrossRefGoogle Scholar
  45. Mäkinen H, Hynynen J, Siitonen J, Sievänen R (2006) Predicting the decomposition of Scots pine, Norway spruce and birch stems in Finland. Ecol Appl 16:1865–1879CrossRefPubMedGoogle Scholar
  46. Mönkkönen M, Juutinen A, Mazziano A, Miettinen K, Podkopaev D, Reunanen P, Salminen H, Tikkanen O-P (2014) Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manag 134:80–89CrossRefGoogle Scholar
  47. Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992CrossRefGoogle Scholar
  48. Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:1–169Google Scholar
  49. Olsson J, Jonsson BG (2010) Restoration fire and wood-inhabiting fungi in a Swedish Pinus sylvestris forest. For Ecol Manag 259:1971–1980CrossRefGoogle Scholar
  50. Pasanen H, Junninen K, Kouki J (2014) Restoring dead wood in forests diversifies wood-decaying fungal assemblages but does not quickly benefit red-listed species. For Ecol Manag 312:92–100. doi: 10.1016/j.foreco.2013.10.018 CrossRefGoogle Scholar
  51. Peltoniemi M, Penttilä R, Mäkipää R (2013) Temporal variation of polypore diversity based on modelled dead wood dynamics in managed and natural Norway spruce forests. For Ecol Manag 310:523–530CrossRefGoogle Scholar
  52. Pretzsch H, Biber P, Dursky J et al (2002) Recommendations for standardized documentation and further development of forest growth simulators [Empfehlungen fur die standardisierte Beschreibung und Weiterentwicklung von Waldwachstumssimulatoren]. Forstwiss Cent 121:138–151. doi: 10.1046/j.1439-0337.2002.00138.x CrossRefGoogle Scholar
  53. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0.
  54. Ranius T, Kindvall O (2004) Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural practices in Sweden. Biol Conserv 119:51–59CrossRefGoogle Scholar
  55. Ranius T, Fahrig L (2006) Targets for maintainance of dead wood for biodiversity conservation based on extinction thresholds. Scand J For Res 21:201–208. doi: 10.1080/02827580600688269 CrossRefGoogle Scholar
  56. Ranius T, Johansson V, Schroeder M, Caruso A (2015) Relative importance of habitat characteristics at multiple spatial scales for wood-dependent beetles in boreal forest. Landsc Ecol 30:1931–1942. doi: 10.1007/s10980-015-0221-5 CrossRefGoogle Scholar
  57. Ranius T, Bohman P, Hedgren O, Wikars L-O, Caruso A (2014) Metapopulation dynamics of a beetle species confined to burned forest sites in a managed forest region. Ecography 37:797–804CrossRefGoogle Scholar
  58. Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (eds) (2010) The 2010 red list of Finnish Species. Ympäristöministeriö, Suomen ympäristökeskus, HelsinkiGoogle Scholar
  59. Renvall P (1995) Community structure and dynamics of wood-rotting basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35:1–51Google Scholar
  60. Roberge J-M, Lämås T, Lundmark T, Ranius T, Felton A, Nordin A (2015) Relative contributions of set-asides and tree retention to the long-term availability of key forest biodiversity strctures at the landscape level. J Environ Manag 154:284–292CrossRefGoogle Scholar
  61. Rouvinen S, Kuuluvainen T, Karjalainen L (2002) Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can J For Res 32:2184–2200CrossRefGoogle Scholar
  62. Salminen H, Lehtonen M, Hynynen J (2005) Reusing legacy FORTRAN in the MOTTI growth and yield simulator. Comp Electron Agric 49:103–113CrossRefGoogle Scholar
  63. Seibold S, Bässler C, Brandl R et al (2015) Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biol Conserv 191:139–149. doi: 10.1016/j.biocon.2015.06.006 CrossRefGoogle Scholar
  64. Seibold S, Bässler C, Brandl R, Büche B et al (2016) Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol. doi: 10.1111/1365-2664.12607 Google Scholar
  65. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. doi: 10.1038/nclimate2318 CrossRefGoogle Scholar
  66. Shorohova E, Kapitsa E (2015) Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For Ecol Manag 356:273–284. doi: 10.1016/j.foreco.2015.07.005 CrossRefGoogle Scholar
  67. Shorohova E, Ignatyeva O, Kapitsa E, Kauhanen H, Kuznetsov A, Vanha-Majamaa I (2012) Stump decomposition rates after clear-felling with and without prescribed burning in southern and northern boreal forests in Finland. For Ecol Manag 263:74–84CrossRefGoogle Scholar
  68. Siipilehto J (1999) Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number. Silva Fennica 33:281–301CrossRefGoogle Scholar
  69. Siipilehto J (2006) Linear prediction application for modelling the relationships between a large number of stand characteristics of Norway spruce stands. Silva Fennica 40:517–530Google Scholar
  70. Siipilehto J (2009) Modelling stand structure in young Scots pine-dominated stands. For Ecol Manag 257:223–232CrossRefGoogle Scholar
  71. Siipilehto J, Ojansuu R, Miina J, Hynynen J, Valkonen S, Saksa T (2014) Metsikön varhaiskehityksen kuvaus MOTTI-ohjelmistossa. Metlan työraportteja 286. (in Finnish)
  72. Siipilehto J, Sarkkola S, Mehtätalo L (2007) Comparing regression estimation techniques when predicting diameter distributions of Scots pine on drained peatlands. Silva Fennica 41:333–349CrossRefGoogle Scholar
  73. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: fennoscandian forests as an example. Ecol Bull 49:11–41Google Scholar
  74. Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forests. Biol Conserv 94:211–220CrossRefGoogle Scholar
  75. Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag 128:211–225CrossRefGoogle Scholar
  76. Similä M, Junninen K (eds) (2012) Ecological restoration and management of boreal forests—best practices from Finland. Metsähallitus, Natural Heritage Services, VantaaGoogle Scholar
  77. Similä M, Martikainen P, Kouki J (2003) Saproxylic beetles in managed and seminatural forests—quality of dead wood matters. For Ecol Manag 174:365–381CrossRefGoogle Scholar
  78. Stephenson NL, Das AJ, Condit R et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93. doi: 10.1038/nature12914 CrossRefPubMedGoogle Scholar
  79. Stokland J (2001) The coarse woody debris profile: an archive of recent forest history and an important biodiversity indicator. Ecol Bull 49:71–83Google Scholar
  80. Tikkanen O, Martikainen P, Hyvarinen E et al (2006) Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann Zool Fenn 43:373–383Google Scholar
  81. Turner MG, Romme WH, Reed RA, Tuskan GA (2003) Post-fire aspen seedling recruitment across the Yellowstone (USA) landscape. Landsc Ecol 18:127–140. doi: 10.1023/A:1024462501689 CrossRefGoogle Scholar
  82. Wallenius T, Niskanen L, Virtanen T, Hottola J, Brūmelis G, Angervuori A, Julkunen J, Pihlström M (2010) Loss of habitats, naturalness and species diversity in Eurasian forest landscapes. Ecol Indic 10:1093–1101CrossRefGoogle Scholar
  83. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615CrossRefGoogle Scholar
  84. Ylisirniö A-L, Penttilä R, Berglund H et al (2012) Dead wood and polypore diversity in natural post-fire succession forests and managed stands–Lessons for biodiversity management in boreal forests. For Ecol Manag 286:16–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Anne-Maarit Hekkala
    • 1
    • 2
    • 5
  • Anssi Ahtikoski
    • 2
  • Marja-Leena Päätalo
    • 2
  • Oili Tarvainen
    • 2
  • Jouni Siipilehto
    • 3
  • Anne Tolvanen
    • 2
    • 4
  1. 1.Thule InstituteUniversity of OuluOuluFinland
  2. 2.Natural Resources Institute Finland (Luke)OuluFinland
  3. 3.Natural Resources Institute Finland (Luke)VantaaFinland
  4. 4.Department of EcologyUniversity of OuluOuluFinland
  5. 5.Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations