Skip to main content

Dry stone walls favour biodiversity: a case-study from the Appennines

Abstract

One of the classical and traditional wall typology built in agricultural or pastoral landscapes are dry stone walls (walls built only of stones without concrete). These vertical surfaces are expected to increase habitat heterogeneity and to play an important role for biodiversity. This study focused on two groups of organisms: amphibians, represented by the rock-dwelling salamander Hydromantes strinatii, that are expected to use walls mainly as shelters, and molluscs, which use of walls may be affected mainly by the trophic resources available. A mountain area of the northern Appennines (NW-Italy) was surveyed to assess the differences between dry stone walls and the wall typologies in terms of morphology, surrounding landscape and salamander and mollusc occurrence; the relationships between wall typology features and salamander and mollusc distribution were assessed. Dry stone walls were more heterogeneous than concrete walls and hosted more lichens than natural rocky walls. They were more used by H. strinatii juveniles than the other walls and played an important role for their distribution. They were positively related to the occurrence of several molluscan species, including species with high ecological plasticity and rock-dwelling species. Among wall features, the most important for molluscs species distribution was vegetation cover, followed by lichen cover and heterogeneity, confirming the importance of trophic content for mollusc exploitation, while vegetated without concrete walls hosted higher number of species. The results suggest that dry stone walls can be important for fauna biodiversity and should be maintained and preserved as a part of landscape management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Armbruster GFJ, Hofer M, Baur B (2007) Effect of cliff connectivity on the genetic population structure of a rock-dwelling land snail species with frequent self-fertilization. Biochem Syst Ecol 35(6):325–333. doi:10.1016/j.bse.2006.12.005

    CAS  Article  Google Scholar 

  2. Balland D (1992) Les eaux cachées. Études géographiques sur les galleries drainantes souterraines. Departement de Géographie, Univers Sorbonne, Paris

    Google Scholar 

  3. Baur B, Froberg L, Baur A (1995) Species diversity and grazing damage in a calcicolous lichen community on top of stone walls in Oland, Sweden. Ann Bot Fenn 32(4):239–250

    Google Scholar 

  4. Baur B, Cremene C, Groza C, Schileyko AA, Baur A, Erhardt A (2007a) Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathian Mountains (Romania). Biologia 62:438–445

    Article  Google Scholar 

  5. Baur B, Froberg L, Muller SW (2007b) Effect of rock climbing on the calcicolous lichen community of limestone cliffs in the northern Swiss Jura Mountains. Nova Hedwigia 85(3–4):429–444. doi:10.1127/0029-5035/2007/0085-0429

    Article  Google Scholar 

  6. Bloch CP, Higgins CL, Willig MR (2007) Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116(3):395–406. doi:10.1111/j.2006.0030-1299.15391.x

    Article  Google Scholar 

  7. Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  9. Camp CD, Jensen JB (2007) Use of twilight zones of caves by plethodontid salamanders. Copeia 3:594–604

    Article  Google Scholar 

  10. Collier MJ (2013) Field boundary stone walls as exemplars of ‘novel’ ecosystems. Landsc Res 38(1):141–150. doi:10.1080/01426397.2012.682567

    Article  Google Scholar 

  11. Cordoba M, Iglesias J, Castillejo J, Ribadulla P (2011) Assessment of slug populations in grassland with permanent refuge traps. IOBC/WPRS Bull 64:113–120

    Google Scholar 

  12. Darlington A (1981) Ecology of walls. Heinemann Educational Books, London

    Google Scholar 

  13. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, de Blust G, DeFilippi R, Frenzel M, Hendrickx F, Herzog F, Klotz S, Liira J, Maelfait JP, Schmidt T, Speelmans M, van Wingerden WKRE, Zobel M (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob Ecol Biogeog 16(6):774–787. doi:10.1111/j.1466-8238.2007.00344.x

    Google Scholar 

  14. Dover J, Sparks T, Clarke S, Gobbett K, Glossop S (2000) Linear features and butterflies: the importance of green lanes. Agric Ecosyst Environ 80(3):227–242. doi:10.1016/S0167-8809(00)00149-3

    Article  Google Scholar 

  15. Fabian Y, Sandau N, Bruggisser OT, Kehrli P, Aebi A, Rohr RP, Naisbit RE, Bersier L-F (2012) Diversity protects plant communities against generalist molluscan herbivores. Ecol Evol 2(10):2460–2473. doi:10.1002/ece3.359

    PubMed Central  PubMed  Article  Google Scholar 

  16. Ficetola GF, Pennati R, Manenti R (2012) Do cave salamanders occur randomly in cavities? An analysis with Hydromantes strinatii. Amphibia-Reptilia 33(2):251–259. doi:10.1163/156853812x638536

    Article  Google Scholar 

  17. Ficetola GF, Pennati R, Manenti R (2013) Spatial segregation among age classes in cave salamanders: habitat selection or social interactions? Popul Ecol 55:217–226. doi:10.1007/s10144-012-0350-5

    Article  Google Scholar 

  18. Francis RA (2011) Wall ecology: a frontier for urban biodiversity and ecological engineering. Prog Phys Geogr 35(1):43–63. doi:10.1177/0309133310385166

    Article  Google Scholar 

  19. Gardener M (2012) Statistics for ecologists using R and Excel. Pelagic Publishing, Exeter

    Google Scholar 

  20. Guseinov E (2004) Natural prey of the jumping spider Menemerus semilimbatus (Hahn, 1827) (Araneae: Salticidae), with notes on its unusual predatory behaviour. Arthropoda Selecta 1:93–100

    Google Scholar 

  21. Heller J, Ittiel H (1990) Natural-history and population-dynamics of the land snail Helix-texta in Israel (Pulmonata, Helicidae). J Molluscan Stud 56:189–204. doi:10.1093/mollus/56.2.189

    Article  Google Scholar 

  22. Hines JE (2006) PRESENCE2—software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html. Accessed Jan 2014

  23. Holland PG (1972) The pattern of species density of old stone walls in western Ireland. J Ecol 60(3):799–805

    Article  Google Scholar 

  24. Iglesias-de la Cruz MC, Sanz-Rodriguez F, Zamarron A, Reyes E, Carrasco E, Gonzalez S, Juarranz A (2012) A secretion of the mollusc Cryptomphalus aspersa promotes proliferation, migration and survival of keratinocytes and dermal fibroblasts in vitro. Int J Cosmet Sci 34(2):183–189. doi:10.1111/j.1468-2494.2011.00699.x

    Article  Google Scholar 

  25. Kerney MP, Cameron RAD (2006) Guide des escargots et limaces d’Europe. Delachaux et Niestlé, Paris

    Google Scholar 

  26. Larcena D (2009) 25 Balades sur les chemins de la pierre sèche. Le Bec en l’Air Editions/Apare, Avignon

    Google Scholar 

  27. Legendre P, Legendre L (1998) Numer Ecol. Elsevier, Amsterdam

    Google Scholar 

  28. MacKenzie DI (2006) Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly. J Wildl Manag 70(2):367–374

    Article  Google Scholar 

  29. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255

    Article  Google Scholar 

  30. Makhzoumi JM (2000) Landscape ecology as a foundation for landscape architecture: application in Malta. Landsc Urban Plan 50(1–3):167–177. doi:10.1016/S0169-2046(00)00088-8

    Article  Google Scholar 

  31. Marshall EJR, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89(1–2):5–21. doi:10.1016/S0167-8809(01)00315-2

    Article  Google Scholar 

  32. McClain CR, Nekola JC (2008) The role of local-scale processes on terrestrial and deep-sea gastropod body size distributions across multiple scales. Evol Ecol Res 10(1):129–146

    Google Scholar 

  33. McMillan MA, Nekola JC, Larson DW (2003) Effects of rock climbing on the land snail community of the Niagara Escarpment in southern Ontario, Canada. Conserv Biol 17(2):616–621. doi:10.1046/j.1523-1739.2003.01362.x

    Article  Google Scholar 

  34. Nekola JC (2003) Large-scale terrestrial gastropod community composition patterns in the Great Lakes region of North America. Divers Distrib 9(1):U55–U56. doi:10.1046/j.1472-4642.2003.00165.x

    Article  Google Scholar 

  35. Oksanen JR, Kindt R, O’Hara RB (2005) Vegan: community ecology package. Department of Statistics and Mathematics, Vienna University of Economics and Business Administration, Vienna. www.r-project.org. Accessed Jun 2007

  36. Patil J, Ekhande AP, Padate GI (2012) A study of terrestrial molluscs with respect to their species richness, relative abundance and density in Toranmal Reserve Forest, North Maharashtra, India. Eur J Zool Res 1:26–30

    Google Scholar 

  37. R Development Core Team (2012) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna

  38. Rebelo R, Leclair MH (2003) Site tenacity in the terrestrial salamandrid Salamandra salamandra. J Herpetol 37(2):440–445. doi:10.1670/0022-1511(2003)037[0440:Stitts]2.0.Co;2

    Google Scholar 

  39. Salvidio S (1992) Diet and food utilization in a rock-face population of Speleomantes ambrosii. Vie Milieu 42(1):35–39

    Google Scholar 

  40. Salvidio S (2013) Homing behaviour in Speleomantes strinatii (Amphibia Plethodontidae): a preliminary displacement experiment. North-West J Zool 9(2):319

    Google Scholar 

  41. Smart CW (2002) A comparison between smaller (>63 μm) and larger (>150 μm) planktonic foraminiferal faunas from the Pleistocene of ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean. Journal of Micropalaeontology 21:137–147

    Article  Google Scholar 

  42. Stephens PA, Buskirk SW, Hayward GD, Del Rio CM (2007) A call for statistical pluralism answered. J App Ecol 44:461–463

    Article  Google Scholar 

  43. Tanadini M, Schmidt BR, Meier P, Pellet J, Perrin N (2012) Maintenance of biodiversity in vineyard-dominated landscapes: a case study on larval salamanders. Anim Conserv 15(2):136–141. doi:10.1111/j.1469-1795.2011.00492.x

    Article  Google Scholar 

  44. Tattersfield P, Warui CM, Seddon MB, Kiringe JW (2001) Land-snail faunas of afromontane forests of Mount Kenya, Kenya: ecology, diversity and distribution patterns. J Biogeogr 28(7):843–861. doi:10.1046/j.1365-2699.2001.00606.x

    Article  Google Scholar 

  45. Ursenbacher S, Alvarez C, Armbruster GFJ, Baur B (2010) High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains. Conserv Genet 11(4):1265–1271. doi:10.1007/s10592-009-9956-3

    Article  Google Scholar 

  46. Welter-Schultes FW (2012) European non-marine molluscs, a guide for species identification. Planet Poster Editions, Gottingen

    Google Scholar 

Download references

Acknowledgments

The comments of M. K. Collier and of three other anonymous reviewers improved the quality of the manuscript. I am particularly grateful to Prof. Chenbei Chang for reading, commenting and revising a preliminary version of this manuscript. I thank also Laura Massobrio and Francesco Manenti for logistic support during field surveys.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raoul Manenti.

Additional information

Communicated by Jorge M. Lobo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manenti, R. Dry stone walls favour biodiversity: a case-study from the Appennines. Biodivers Conserv 23, 1879–1893 (2014). https://doi.org/10.1007/s10531-014-0691-9

Download citation

Keywords

  • Stone wall
  • Biodiversity
  • Landscape ecology
  • Salamander
  • Snail
  • Agricultural