Advertisement

Biodiversity and Conservation

, Volume 23, Issue 1, pp 81–107 | Cite as

Conservation priorities in the Southern Central Andes: mismatch between endemism and diversity hotspots in the regional flora

  • Ana C. Godoy-Bürki
  • Pablo Ortega-Baes
  • Jesús M. Sajama
  • Lone Aagesen
Original Paper

Abstract

North western Argentina, the southernmost portion of the tropical Andes, contains one of the main areas of endemism within the Southern Cone, as well as one of the main diversity hotspots of the country. Historically its reserve area systems have been located in the richest ecoregion of the area; the Southern Andean Yungas. We evaluated the effectiveness of the current protected areas in preserving the endemic flora of the region. The distributions of 505 endemic species were either modeled or included as observed data to determine endemism hotspots in each ecoregion. The endemic species were mainly found in arid ecoregions such as the High Monte and the Central Andean Puna, as well as in the transition zones between these regions and the Southern Andean Yungas. We found that more than 1/3 of the endemic species are unprotected in their entire ranges by the current system, while nearly half of the species are protected in only 5 % of their distribution ranges. New priority areas were chosen to increase the effectiveness based on the irreplaceability concept. We show that adding 251 new cells of 100 km2 each would improve the protection values and convert the system to effective. The present paper highlights that priorities set on the basis of species richness may not successfully conserve areas of high plant endemism. However, zoologist would have to realize similar assessments in the endemic fauna in order to find the optimal designed of protected areas system to conserve both the endemic flora and fauna in the Southern Central Andes.

Keywords

Southern Central Andes Arid environments Argentina Conservation Endemism Vascular plants 

Notes

Acknowledgments

We wish to thank Dr. Fernando O. Zuloaga for helpful discussions and observations on earlier versions of this paper. We furthermore thank the Consejo Nacional de Investigaciones Científicas (CONICET) for provided financial support through a PhD grant for ACG-B. Finally to the Instituto de Botánica Darwinion (IBODA) for providing the software and place to develop the corresponding research.

References

  1. Aagesen L, Szumik CA, Zuloaga F, Morrone O (2009) Quantitative biogeography in the South America highlands-recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25:295–310CrossRefGoogle Scholar
  2. Aagesen L, Bena MJ, Nomdedeu S, Panizza A, López R, Zuloaga F (2012) Areas of endemism in the Southern Central Andes. Darwiniana 50:218–251Google Scholar
  3. Administracion de Parques Nacionales (APN) (2007) Sistema de Información de Biodiversidad. (http://www.sib.gov.ar). Accessed Apr 2012
  4. Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS 106:9749–9754PubMedCrossRefGoogle Scholar
  5. Benoit I (1996) Representación ecológica del Sistema Nacional de Áreas Silvestres Protegidas del Estado. In: Muñoz M, Nuñez H, Yañez J (eds) Libro rojo de los sitios prioritarios para la conservación de la diversidad biológica en Chile. SantiagoGoogle Scholar
  6. Bianchi AR, Yañez CE (1992) Las precipitaciones en el noroeste argentino. INTA, SaltaGoogle Scholar
  7. Birch CPD, Oom SP, Beecham JA (2007) Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol Model 206:347–359CrossRefGoogle Scholar
  8. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería, Buenos AiresGoogle Scholar
  9. Carvalho SB, Brito JC, Pressey RL, Crespo E, Possingham HP (2010) Simulating the effects of using different types of species distribution data in reserve selection. Biol Conserv 143:426–438CrossRefGoogle Scholar
  10. Cowling R (2001) Endemism. In: Levin SA (ed) Encyclopedia of Biodiversity, vol. 2. Academic Press, San DiegoGoogle Scholar
  11. Diaz-Gomez JM (2007) Endemism in liolaemus (Iguania: Liolaemidae) from the Argentinian Puna. South Am J Herpetol 2:59–68CrossRefGoogle Scholar
  12. Donato M, Posadas P, Miranda-Esquivel DR, Jaureguizar EO, Cladera G (2003) Historical biogeography of the Andean region: evidence from listroderina (Coleoptera: Curculionidae: Rhytirrhinini) in the context of the South American geobiotic scenario. Biol J Linnean Soc 80:339–352CrossRefGoogle Scholar
  13. Elith J et al (2006) Novel methods improve prediction of species’ distributions form occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  14. Ezcurra E (2006) Natural history and evolution of the world’s deserts. In: Ezcurra E (ed) Global deserts outlook. UNEP, Denmark, pp 2–26Google Scholar
  15. Game ET, Grantham HS (2008) Marxan user manual: for marxan version 1.8.10. Univ. of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association, Vancouver. (http://www.uq.edu.au/marxan/index.html)
  16. Gaston KJ (1994) Rarity. Chapman and Hall, LondonCrossRefGoogle Scholar
  17. Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Applied Ecol 46:1–9CrossRefGoogle Scholar
  18. Gaston KJ, Rodrigues ASL, Van Rensburg BJ, Koleff P, Chown SL (2001) Complementary representation and zones of ecological transition. Ecol Lett 4:4–9CrossRefGoogle Scholar
  19. Gonzales JA (2009) Climatic change and other anthropogenic activities are affecting environmental services on the Argentina Northwest (ANW). Earth Environ Sci 6:1–2Google Scholar
  20. Gonzáles JA (2005) Los ambientes naturales en áreas montañosas del Noroeste Argentino (NOA), su interrelación con países limítrofes, recuperación y conservación. In: Serie Conservación de la Naturaleza, No. 15. Fundación Miguel Lillo, TucumánGoogle Scholar
  21. Grau RH, Gasparri IN, Aide MT (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv 32:140–148CrossRefGoogle Scholar
  22. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  23. Hernández-Hernández T, Hernandez HM, De-Nova AJ, Puente R, Eguiarte L, Magallón S (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Am J Bot 98:44–61PubMedCrossRefGoogle Scholar
  24. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. (http://www.worldclim.org)Google Scholar
  25. Ibisch PL, Beck SG, Gerkmann B, Carretero A (2003) Diversidad Biológica: Ecoregiones y ecosistemas. In: Ibisch P, Merida G (eds) Biodiversidad: La riqueza de Bolivia. Editorial FAN, Santa Cruz de la Sierra, Bolivia, pp 73–75Google Scholar
  26. Izquierdo AE, Grau HR (2009) Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina. J Environ Manage 90:858–865PubMedCrossRefGoogle Scholar
  27. Jennings MD (2000) Gap analysis: concepts, methods, and recent results. Landsc Ecol 15:5–20CrossRefGoogle Scholar
  28. Kumar S, Stohlgren TJ (2009) Maxent modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol and Nat Environ 1:94–98Google Scholar
  29. Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW (2006) Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214PubMedCrossRefGoogle Scholar
  30. Larrea-Alcázar DM, López RP, Quintanilla M, Vargas A (2010) Gap analysis of two savanna-type ecoregions: a two-scale floristic approach applied to the Llanos de Moxos and Beni Cerrado, Bolivia. Biodivers Conserv 19:1769–1783CrossRefGoogle Scholar
  31. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  32. López RP, Zambrana-Torrelio C (2006) Representation of Andean dry ecoregions in the protected areas of Bolivia: the situation in relation to the new phytogeographical findings. Biodivers Conserv 15:2163–2175CrossRefGoogle Scholar
  33. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253PubMedCrossRefGoogle Scholar
  34. Minetti JL (2005) El clima del noroeste argentino. San Miguel de Tucumán, Magna, p 449Google Scholar
  35. Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520CrossRefGoogle Scholar
  36. Mourelle C, Ezcurra E (1996) Species richness of Argentine cacti: a test of biogeographic hypotheses. J Veg Sci 7:667–680CrossRefGoogle Scholar
  37. Mourelle C, Ezcurra E (1997) Differentiation diversity of Argentine cacti and its relationship to environmental factors. J Veg Sci 8:547–558CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GBA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  39. Navone S, Abraham E (2006) State and trends of the world’s deserts. In: Ezcurra E (ed) Global deserts outlook. UNEP, Denmark, pp 73–87Google Scholar
  40. Nhancale BA, Smith RJ (2011) The influence of planning unit characteristics on the efficiency and spatial pattern of systematic conservation planning assessments. Biodivers Conserv 20:1821–1835CrossRefGoogle Scholar
  41. Olson DM et al (2001) Terrestrial ecoregions of the World: a new map of life on Earth. BioSci 51:933–938CrossRefGoogle Scholar
  42. Orme CDL et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019PubMedCrossRefGoogle Scholar
  43. Ortega-Baes P et al (2012) Intensive field surveys in conservation planning: priorities for cactus diversity in the Saltenian Calchaquíes Valleys (Argentina). J Arid Environ 82:91–97CrossRefGoogle Scholar
  44. Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev Mex de Biodivers 79:205–216Google Scholar
  45. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245CrossRefGoogle Scholar
  46. Pearson RG (2007) Species distribution modeling for conservation educators and practitioners. Synthesis, Am Museum Nat Hist. (http://ncep.amnh.org)
  47. Peterson TA, Watson DM (1998) Problems with areal definitions of endemism: the effects of spatial scaling. Divers Distrib 4:189–194CrossRefGoogle Scholar
  48. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  49. Reid WV (1998) Biodiversity hotspots. Trend Ecol Evol 13:275–280CrossRefGoogle Scholar
  50. Ricketts TH (2001) Aligning conservation goals: are patterns of species richness and endemism concordant at regional scales? Anim Biodivers Conserv 24:91–99Google Scholar
  51. Rodrigues ASL et al (2004a) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643PubMedCrossRefGoogle Scholar
  52. Rodrigues ASL et al (2004b) Global gap analysis: priority regions for expanding the global protected-area network. BioSci 54:1092–1100CrossRefGoogle Scholar
  53. Roig FA, Roig-Juñent S, Corbalán V (2009) Biogeography of the Monte Desert. J Arid Environ 73:164–172CrossRefGoogle Scholar
  54. Solano E, Feria PT (2007) Ecological niche modeling and geographic distribution of the genus Polianthes L. (Agavacea) in Mexico: using niche modeling to improve assessment of risk status. Biodiv Conserv 16:1885–1900CrossRefGoogle Scholar
  55. Swenson JJ et al (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol 12:1–18PubMedCentralPubMedCrossRefGoogle Scholar
  56. Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D (2012) Detecting areas of endemism with a taxonomically diverse dataset: plants, mammals, reptiles, amphibians, birds and insects from Argentina. Cladistics 28:317–329CrossRefGoogle Scholar
  57. Villamil CB, De Villalobos AE, Scoffield RL (2009–2010) Plantas endémicas de Argentina. http://www.lista-planear.org. Accessed Jul–Jun 2012
  58. Wieczorek J, Guo Q, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculation associated uncertainty. Int J Geogr Inf Sci 18:745–767CrossRefGoogle Scholar
  59. Xu H, Wu J, Liu Y (2008) Biodiversity congruence and conservation strategies: a national test. BioSci 58:632–639CrossRefGoogle Scholar
  60. Young KR, Ulloa Ulloa C, Luteyn JL, Knapp S (2002) Plant evolution and endemism in Andean South America: an introduction. Bot Rev 68:4–21CrossRefGoogle Scholar
  61. Zuloaga FO, Morrone O, Rodriguez D (1999) Análisis de la biodiversidad en plantas vasculares de la Argentina. Kurtziana 27:17–167Google Scholar
  62. Zuloaga FO, Morrone, O, Belgrano MJ (2008) Catálogo de las Plantas Vasculares del Cono Sur. Monogr Syst Bot Missouri Bot Gard 107:609–967. (http://www2.darwin.edu.ar)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ana C. Godoy-Bürki
    • 1
  • Pablo Ortega-Baes
    • 2
  • Jesús M. Sajama
    • 2
  • Lone Aagesen
    • 1
  1. 1.Instituto de Botánica Darwinion (IBODA)-CONICETBuenos AiresArgentina
  2. 2.Laboratorio de Investigaciones Botánicas (LABIBO)-CONICET, Facultad de Ciencias NaturalesUniversidad Nacional de SaltaSaltaArgentina

Personalised recommendations