Biodiversity and Conservation

, Volume 22, Issue 10, pp 2375–2400 | Cite as

Meta-analysis reveals microevolution in grassland plant species under contrasting management

Original Paper


Grassland species might be under differential selection pressure due to management regimes by man or unmanaged grazers. To investigate microevolutionary changes in plants, I used a meta-analysis and a comparative approach. This analysis incorporates 28 studies on 19 species in 3 paired management regimes with a total of 152 reported trait values resulting in 40 pooled Hedge’s d effect sizes on genetic, vegetative and reproductive traits as well as 83 Hedge’s ds of 14 specific traits. Of the pooled and specific traits, 60 and 72 % indicated divergent selection pressures within a management regime. The pooled Hedge’s ds did not differ among the management regimes. Within mown versus grazed sites, trait groups were affected differently with increased reproductive traits in plants originating from grazed sites. In the other management regimes, the trait groups were affected similarly, except of some specific traits. Longevity, palatability, clonality and biome origin did not explain differences in pooled effect sizes, but tended to explain differences in some specific traits. Overall, general selection patterns were rare probably due to a high heterogeneity of among and within species responses, which might level each other out. Moreover, the number of data points per group of interest is often low and thus, for a final conclusion more studies are needed. Nonetheless, the divergent plant reactions indicate that selection pressures within paired management regimes might be large enough to induce microevolutionary changes in grasslands. Subsequently, the increased variation within species under different management techniques might buffer species persistence in the long term.


Contemporary evolution Grassland Habitat selection Land-use Review 



I thank Jaboury Ghazoul, the Subject Editor Camilla Wellstein and the anonymous reviewers for helpful comments on this manuscript.


  1. Ashley MV, Willson MF, Pergams ORW, O’Dowd DJ, Gende SM, Brown JS (2003) Evolutionarily enlightened management. Biol Conserv 111(2):115–123CrossRefGoogle Scholar
  2. Bätzing W (2003) Die Alpen Geschichte und Zukunft einer europäischen Kulturlandschaft. C.H. Beck, MünchenGoogle Scholar
  3. Bone E, Farres A (2001) Trends and rates of microevolution in plants. Genetica 112:165–182CrossRefPubMedGoogle Scholar
  4. Callaghan TV, Emannualson U (1985) Population structure and processes of tundra plants and vegetation. In: White J (ed) The population structure of vegetation. Junk, Dodrecht, pp 399–439Google Scholar
  5. Carman JG, Briske DD (1985) Morphologic and allozymic variation between long-term grazed and non-grazed populations of the bunchgrass Schizachyrium scoparium var. frequens. Oecologia 66(3):332–337CrossRefGoogle Scholar
  6. Cid MS, Detling JK, Brizuela MA, Whicker AD (1989) Patterns in grass silicification—response to grazing history and defoliation. Oecologia 80(2):268–271Google Scholar
  7. de Witte LC, Stöcklin J (2010) Longevity of clonal plants: why it matters and how to measure it. Ann Bot 106(6):859–870CrossRefPubMedGoogle Scholar
  8. Detling JK, Painter EL (1983) Defoliation responses of western wheatgrass populations with diverse histories of prairie dog grazing. Oecologia 57(1–2):65–71CrossRefGoogle Scholar
  9. Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11(3):727–737CrossRefGoogle Scholar
  10. Fischer M, Rudmann-Maurer K, Weyand A, Stocklin J (2008) Agricultural land use and biodiversity in the Alps—how cultural tradition and socioeconomically motivated changes are shaping grassland biodiversity in the Swiss Alps. Mt Res Dev 28(2):148–155CrossRefGoogle Scholar
  11. Fischer M, Weyand A, Rudmann-Maurer K, Stöcklin J (2011) Adaptation of Poa alpina to altitude and land use in the Swiss Alps. Alp Bot 121(2):91–105CrossRefGoogle Scholar
  12. Fu YB, Thompson D, Willms W, Mackay M (2005) Long-term grazing effects on genetic variability in mountain rough fescue. Rangel Ecol Manag 58(6):637–642CrossRefGoogle Scholar
  13. Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80(4):1142–1149CrossRefGoogle Scholar
  14. Jaramillo VJ, Detling JK (1988) Gazing history, defoliation, and competition—effects on shortgrass production and nitrogen accumulation. Ecology 69(5):1599–1608CrossRefGoogle Scholar
  15. Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J Ecol 90(2):360–370CrossRefGoogle Scholar
  16. Kölliker R, Stadelmann FJ, Reidy B, Nosberger J (1998) Fertilization and defoliation frequency affect genetic diversity of Festuca pratensis Huds. in permanent grasslands. Mol Ecol 7(11):1557–1567CrossRefGoogle Scholar
  17. Lachat T, Blaser F, Bösch R, Bonnard L, Gimmi U, Grünig A, Roulier C, Sirena G, Stöcklin J, Volkart G (2010) Verlust wertvoller Lebensräume. In: Lachat T, Pauli D, Gonseth Y et al. (eds) Wandel der Biodiversität in der Schweiz seit 1900—Ist die Talsohle erreicht? Zürich, Bristol Stiftung, Haupt, Bern, Stuttgart, Wien, pp 22–63 Google Scholar
  18. Lauber K, Wagner G (1996) Flora helvetica. Haupt, BernGoogle Scholar
  19. Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS One 3(12):e4010CrossRefPubMedGoogle Scholar
  20. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94(5):942–952CrossRefGoogle Scholar
  21. Light RJ, Pillemer DB (1984) Summing up: the science of reviewing research. Harvard University Press, CambridgeGoogle Scholar
  22. Liston A, Wilson BL, Robinson WA, Doescher PS, Harris NR, Svejcar T (2003) The relative importance of sexual reproduction versus clonal spread in an aridland bunchgrass. Oecologia 137(2):216–225CrossRefPubMedGoogle Scholar
  23. McNaughton SJ, Chapin FS (1985) Effects of phosphorous nutrition and defoliation on C-4 graminoids from the Serengeti plains. Ecology 66(5):1617–1629CrossRefGoogle Scholar
  24. McNaughton SJ, Tarrants JL, McNaughton MM, Davis RH (1985) Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66(2):528–535CrossRefGoogle Scholar
  25. Mengli Z, Willms WD, Bing H, Laroche A (2005) Effects of heavy grazing pressure on the random amplified polymorphic DNA marker diversity of mountain rough fescue (Festuca campestris Rydb.) in south western Alberta. Can J Plant Sci 85(3):623–629CrossRefGoogle Scholar
  26. Musche M, Settele J, Durka W (2008) Genetic population structure and reproductive fitness in the plant Sanguisorba officinalis in populations supporting colonies of an endangered Maculinea butterfly. Int J Plant Sci 169(2):253–262CrossRefGoogle Scholar
  27. Musche M, Settele J, Durka W (2010) Performance and response to defoliation of Sanguisorba officinalis (Rosaceae) seedlings from mown and successional habitats. Botany 88(7):691–697CrossRefGoogle Scholar
  28. Norton-Griffiths M (1979) The influence of grazing, browsing and fire on the vegetation dynamics of the Serengeti. In: Sinclair ARE, Norton-Griffiths M (eds) Serengeti: dynamics of an ecosystem. University Chicago Press, Chicago, pp 310–352Google Scholar
  29. Odat N, Jetschke G, Hellwig FH (2004) Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities. Mol Ecol 13(5):1251–1257CrossRefPubMedGoogle Scholar
  30. Painter EL, Detling JK, Steingraeber DA (1989) Grazing history, defoliation, and frequency-dependent competition—effects on two North-American grasses. Am J Bot 76(9):1368–1379CrossRefGoogle Scholar
  31. Palmer AR (1999) Detecting publication bias in meta-analyses: a case study of fluctuating asymmetry and sexual selection. Am Nat 154:220–233CrossRefGoogle Scholar
  32. Pico FX, van Groenendael J (2007) Large-scale plant conservation in European semi-natural grasslands: a population genetic perspective. Divers Distrib 13(6):920–926CrossRefGoogle Scholar
  33. Polley HW, Detling JK (1988) Herbivory tolerance of Agropyron smithii populations with different grazing histories. Oecologia 77(2):261–267CrossRefGoogle Scholar
  34. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104(3):361–376CrossRefGoogle Scholar
  35. Poschlod P, Dannenmann A, Kahmen S, Melzheimer V, Biedermann H, Mengel C, Neugebauer KR, Pantle I (2000) Genes in the landscape—change in central European land use and its impact on genetic diversity of plants. Schriftenreihe für Vegetationskunde, Bundesamt für Naturschutz, Bonn 32:111–127Google Scholar
  36. Pott R (1996) Die Entwicklungsgeschichte und Verbreitung xerothermer Vegetationseinheiten in Mitteleuropa under dem Einfluss des Menschen. Tuexenia 16:337–369Google Scholar
  37. Prentice HC, Lonn M, Rosquist G, Ihse M, Kindstrom M (2006) Gene diversity in a fragmented population of Briza media: grassland continuity in a landscape context. J Ecol 94(1):87–97CrossRefGoogle Scholar
  38. Reisch C, Poschlod P (2009) Land use affects flowering time: seasonal and genetic differentiation in the grassland plant Scabiosa columbaria. Evol Ecol 23(5):753–764CrossRefGoogle Scholar
  39. Reisch C, Poschlod P (2011) Morphology and phenology of Scabiosa columbaria from mown and grazed habitats—results of a simulation experiment. Flora 206(10):887–891CrossRefGoogle Scholar
  40. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198CrossRefPubMedGoogle Scholar
  41. Ronce O, Olivieri I (1997) Evolution of reproductive effort in a metapopulation with local extinctions and ecological succession. Am Nat 150(2):220–249CrossRefPubMedGoogle Scholar
  42. Rosenberg MS, Adams DC, Gurewitch J (1999) MetaWin: statistical software for meta-analysis, vol version 2.0. Sinauer Associates, SunderlandGoogle Scholar
  43. Rosenthal R (1979) The “file-drawer problem” and tolerance for null results. Psychol Bull 86:638–641CrossRefGoogle Scholar
  44. Rudmann-Maurer K, Weyand A, Fischer M, Stöcklin J (2007) Microsatellite diversity of the agriculturally important alpine grass Poa alpina in relation to land use and natural environment. Ann Bot 100(6):1249–1258CrossRefPubMedGoogle Scholar
  45. Savolainen O (2011) The genomic basis of local climatic adaptation. Science 333(6052):49–50CrossRefGoogle Scholar
  46. Schlapfer F, Fischer M (1998) An isozyme study of clone diversity and relative importance of sexual and vegetative recruitment in the grass Brachypodium pinnatum. Ecography 21(4):351–360CrossRefGoogle Scholar
  47. Schmid B (1990) Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol Trends Plants 4(1):25–34Google Scholar
  48. Silvertown J, Charlesworth D (2001) Introduction to plant population biology, 4th edn. Blackwell Science, Oxford, UKGoogle Scholar
  49. Smith SE (1998) Variation in response to defoliation between populations of Bouteloua curtipendula var. caespitosa (Poaceae) with different livestock grazing histories. Am J Bot 85(9):1266–1272CrossRefPubMedGoogle Scholar
  50. Smith SE, Mosher R, Fendenheim D (2000) Seed production in sideoats grama populations with different grazing histories. J Range Manage 53(5):550–555CrossRefGoogle Scholar
  51. Smith SE, Arredondo T, Aguiar M, Huber-Sannwald E, Alpuche A, Aguado A, Grageda OA, Halbrook K, Bottini C (2009) Fine-scale spatial genetic structure in perennial grasses in three environments. Rangel Ecol Manag 62(4):356–363CrossRefGoogle Scholar
  52. Stöcklin J, Bosshard A, Klaus G, Rudmann-Maurer K, Fischer M (2007) Landnutzung und biologische Vielfalt in the Alpen—Thematische Synthese zum Forschungsschwerpunkt II “Land- und Forstwirtschaft im alpinen Lebensraum” des Nationalen Forschungsprogramms NFP 48 “Landschaften und Lebensräume der Alpen” des Schweizerischen Nationalfonds SNF. vdf Hochschulverlag AG, Zürich, SwitzerlandGoogle Scholar
  53. Tomas MA, Carrera AD, Poverene M (2000) Is there any genetic differentiation among populations of Piptochaetium napostaense (Speg.) Hack (Poaceae) with different grazing histories? Plant Ecol 147(2):227–235CrossRefGoogle Scholar
  54. Tummers B, van der Laan J, Huyser K (2010) Data Thief III, 1.6 edn. Accessed June 4, 2012
  55. Veeneklaas R, Bockelmann A, Reusch T, Bakker J (2011) Effect of grazing and mowing on the clonal structure of Elytrigia atherica: a long-term study of abandoned and managed sites. Preslia 83(3):455–470Google Scholar
  56. Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26(2):228–237CrossRefPubMedGoogle Scholar
  57. Westoby M, Leishman M, Lord J (1996) Comparative ecology of seed size and dispersal. Philos Trans R Soc Lond Ser B Biol Sci 351(1345):1309–1317CrossRefGoogle Scholar
  58. Zopfi HJ (1993) Ecotypic variation in Rhinanthus alectorolophus (Scopoli) Pollich (Scrophulariaceae) in relation to grassland management. II. The genotypic basis of seasonal ecotypes. Flora 188(2):153–173Google Scholar
  59. Zopfi HJ (1998a) The genetic basis of ecotypic variants of Euphrasia rostkoviana Hayne (Scrophulariaceae) in relation to grassland management. Flora 193(1):41–58Google Scholar
  60. Zopfi HJ (1998b) Life-history variation among populations of Euphrasia rostkoviana Hayne (Scrophulariaceae) in relation to grassland management. Biol J Linnean Soc 64(2):179–205Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Environmental Systems ScienceSwiss Federal Institute of Technology Zurich (ETH Zurich)ZürichSwitzerland

Personalised recommendations