Advertisement

Biodiversity and Conservation

, Volume 22, Issue 10, pp 2207–2221 | Cite as

Dry calcareous grasslands from two neighboring biogeographic regions: relationship between plant traits and rarity

  • Nataša Pipenbaher
  • Mitja Kaligarič
  • Norman W. H. Mason
  • Sonja Škornik
Original Paper

Abstract

European dry grasslands formed of the Festuco-Brometea type are among the most diverse plant communities within agricultural landscapes. We examined floristic composition, functional trait structure and threatened species occurrence in grasslands of this type from in two distinct biogeographic regions, Dinaric (NW Balkan) and the Central European. In the Central European region this type of grassland is threatened by a decline in traditional extensive management. We tested, if differences in the level of threat between regions are matched by differences in community-weighted means for resource use strategy traits and occurrence of Red List (threatened) species. We then tested if threatened species differed in their traits from other species and if threatened species richness was related to CWM for resource use strategy traits. The communities from the Central European region had significantly higher SLA and lower LDMC, which perhaps reflects an increase in intensive agriculture promoting fast-growing species. Threatened species occurrence did not differ significantly between regions, but threatened species richness was significantly negatively correlated with CWM for height and SLA. This may suggest that threatened species are less likely to occur in high productivity communities where light competition is intense. This study provides initial evidence that changes in CWM for resource use strategy traits may provide a useful means for predicting threatened species loss in dry grassland ecosystems.

Keywords

Plant functional traits Community-weighted mean (CWM) Abandonment Threatened plant species Central European grasslands Dinaric grasslands 

References

  1. Alekšić JM, Geburek T (2010) Mitochondrial DNA reveals complex genetic structuring in a stenoendemic conifer Picea omorika [(Panč.) Purk.] caused by its long persistence within the refugial Balkan region. Plant Syst Evol 285:1–11CrossRefGoogle Scholar
  2. Anderson MJ, Ter Braak CJF (2003) Permutation tests for multi-factorial analysis of variance. J Stat Comput Sim 73:85–113CrossRefGoogle Scholar
  3. Anonymus (2002) Pravilnik o uvrstitvi ogroženih rastlinskih in živalskih vrst v rdeči seznam (Rules on the inclusion of endangered plant and animal species in the Red List), Ur.l. RS, št.82/2002 (in Slovenia)Google Scholar
  4. ARSO (2009) Meteorološki letopis–mesečna višina padavin. http://www.arso.gov.si/vreme/podnebje/meteorolo%c5%a1ki%20letopis/2009pad_vis.pdf. Accessed 24 Oct 2011
  5. Bernhardt-Römermann M, Kirchner M, Kudernatsch T, Jakobi G, Fischer A (2006) Changed vegetation composition in coniferous forests near to motorways in Southern Germany: the effects of traffic-born pollution. Env Poll 143:572–581CrossRefGoogle Scholar
  6. Braun-Blanquet J (1964) Pflanzensoziologie. Grundzuge der Vegetationskunde, Springer VerlagCrossRefGoogle Scholar
  7. Brunhoff C, Galbreath KE, Fedorov VB, Cook JA, Jaarola M (2003) Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes. Mol Ecol 12:957–968PubMedCrossRefGoogle Scholar
  8. Cornelissen JHC, Lavorel S, Gernier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  9. Cowling RM, Campbell BM (1980) Convergence in vegetation structure in the mediterranean communities of California, Chile and South Africa. Plant Ecol 43:191–197CrossRefGoogle Scholar
  10. Deffontaine V, Libois R, Kotlík P, Sommer R, Nieberding C, Paradis E, Searle JB, Michaux JR (2005) Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Mol Ecol 14:1727–1739PubMedCrossRefGoogle Scholar
  11. Devillers P, Devillers-Terschuren J (1993) A classification of Palaearctic habitats. Council of Europe, StrasbourgGoogle Scholar
  12. Dizdarević M, Lakušić R, Grgić P, Kutleša LJ, Pavlović B, Jonlija R (1984) Ekološke osnove poimanja reliktnosti vrste Picea omorika Pančić. Bilten Društva ekologa Bosne i Herzegovine, Ser A2:5–56Google Scholar
  13. Dostálek J, Franík T (2008) Dry grassland plant diversity conservation using low-intensity sheep and goat grazing management: case study in Prague (Czech Republic). Biodivers Conserv 17:1439–1454CrossRefGoogle Scholar
  14. Dray S, Legendre P (2008) Testing the species traits environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412PubMedCrossRefGoogle Scholar
  15. Duncan RP, Young JR (2000) Determinants of plant extinction and rarity 145 years after European settlement of Auckland. New Zealand. Ecology 81(11):3048–3061Google Scholar
  16. Fiedler PL, Ahouse JJ (1992) Hierarchies of cause: toward an understanding of rarity in vascular plant species. In: Fiedler PL, Jain SK (eds) Conservation biology—the theory and practice of nature conservation, preservation and management. Chapman & Hall, New YorkGoogle Scholar
  17. Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737CrossRefGoogle Scholar
  18. Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorous gradients. J Ecol 88:964–977CrossRefGoogle Scholar
  19. Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurnet G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  20. Griffiths HI, Frogley MR (2004) Fossil ostracods, faunistics and the evolution of regional biodiversity. In: Griffiths HI, Krystufek B, Reed JM (eds) Balkan biodiversity: pattern and process in the european hotspot. Springer, Dordrecht, pp 261–272CrossRefGoogle Scholar
  21. Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31CrossRefGoogle Scholar
  22. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley and Sons, ChichesterGoogle Scholar
  23. Hewitt GM (1999) Post-glacial recolonisation of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  24. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  25. Hodgson JG, Wilson PJ, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to hard problem. Oikos 85:282–294CrossRefGoogle Scholar
  26. Hodgson JG, Montserrat-Martı G, Tallowin J, Thompson K, Diaz S, Cabido M, Grime JP, Wilson PJ, Band SR, Bogard A, Cabido R, Caceres D, Castro-Dıez P, Ferrer C et al (2005) How much will it cost to save grassland diversity? Biol Conserv 122:263–273CrossRefGoogle Scholar
  27. Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32CrossRefGoogle Scholar
  28. Kahmen S, Poschlod P, Schreiber K (2002) Conservation management calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104:319–328CrossRefGoogle Scholar
  29. Kaligarič M (1997) Rastlinstvo Primorskega krasa in Slovenske Istre: travniki in pašniki. Znanstveno-Raziskovalno središče Republike Slovenije, Koper, Zgodovinsko društvo za južno PrimorskoGoogle Scholar
  30. Kaligarič M, Škornik S (2002) Variety of dry and semi-dry secondary grasslands (Festuco-Brometea) in Slovenia—contact area of different geoelements. Razpr - Slov akad znan Umet 227–246Google Scholar
  31. Kaligarič M, Culiberg M, Kramberger B (2006) Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobot 41:241–258CrossRefGoogle Scholar
  32. Kaligarič M, Meister MH, Škornik S, Šajna N, Kramberger B, Bolhar-Nordenkampf HR (2011) Grassland succession is mediated by umbelliferous colonizers showing allelopathic potential. Plant Biosyst 145:688–698CrossRefGoogle Scholar
  33. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P et al. (2008) The LEDA Traitbase: a database of plant life-history traits of North West EuropeGoogle Scholar
  34. Krystufek B, Buzan EV, Hutchinson WF, Hanfling B (2007) Phylogeography of the rare Balkan endemic Martino’s vole, Dinaromys bogdanovi, reveals strong differentiation within the western Balkan Peninsula. Mol Ecol 16:1221–1232PubMedCrossRefGoogle Scholar
  35. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  36. Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classification: from general groups to specific groups based on response to disturbance. Trend Ecol Evol 12:474–478CrossRefGoogle Scholar
  37. Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quetier F, Thebault A, Bonis A (2008) Assessing functional diversity in the field—methodology metters! Funct Ecol 22:134–147Google Scholar
  38. Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diver-sity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  39. Levene H (1960) Robust tests for equality of variances. Palo Alto, CA, Stanford University Press, Contributions to Probability and Statistics. I. OlkinGoogle Scholar
  40. Martinčič A, Wraber T, Jogan N, Podobnik A, Turk B, Vreš B (2007) Mala flora Slovenije. Kjuč za določanje praprotnic in semenk, Tehniška zalozba SlovenijeGoogle Scholar
  41. McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83:31–44CrossRefGoogle Scholar
  42. Merunkova K, Chytry M (2012) Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol 213:591–602CrossRefGoogle Scholar
  43. Michaux JR, Magnanou E, Paradis E, Nieberding C, Libois R (2003) Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Mol Ecol 12:685–697PubMedCrossRefGoogle Scholar
  44. Molnár Z, Bölöni J, Horváth F (2008) Threatening factors encountered: actual endangerment of the Hungarian (semi-)natural habitats. Acta Bot Hung 50:195–210Google Scholar
  45. Moretti M, de Bello F, Roberts SP, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108PubMedCrossRefGoogle Scholar
  46. Moss D, Roy D (1998) European Towards a European Habitat Classification Background, Review 1989–1995. Environmental Agency–EUNIS. http://www.eea.europa.eu/. Accessed 5 June 2013
  47. Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885CrossRefGoogle Scholar
  48. Pipenbaher N, Kaligarič M, Škornik S (2011) Floristic and functional comparision of karst pastures and karst meadows from the north Adriatic karst. Acta Carsologica 40:515–525Google Scholar
  49. Poldini L (1989) La vegetazione del Carso isontino e triestino. TriesteGoogle Scholar
  50. Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC (2012) Linking landscape history and dispersal traits in grassland plant communities. Oecologia 168:773–783PubMedCrossRefGoogle Scholar
  51. R Development Core Team (2009) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org
  52. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  53. Ricotta C, Moretti M (2010) Assessing the functional turnover of species assemblages with tailored dissimilarity matrices. Oikos 119:1089–1098CrossRefGoogle Scholar
  54. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Community Ecol 167:181–188Google Scholar
  55. Römermann C, Tackenberg O, Scheuerer M, May R, Poschlod P (2007) Predicting habitat distribution and frequency from plant species co-occurrence data. J Biogeogr 34:1041–1052CrossRefGoogle Scholar
  56. Römermann C, Tackenberg AKJ, Poschlod P (2008) Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach. Biodivers Conserv 17:591–604CrossRefGoogle Scholar
  57. Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814PubMedCrossRefGoogle Scholar
  58. Škornik S (2000) Suha in polsuha travišča reda Brometalia erecti Koch 1926 v Sloveniji. Dokt. Dis, LjubljanaGoogle Scholar
  59. Smart SM, Bunce RGH, Marrs R, LeDuc M, Firbank LG, Maskell LC, Scott WA, Thompson K, Walker KJ (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: tests of hypothesised changes in trait representation. Biol Conserv 124:355–371CrossRefGoogle Scholar
  60. ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  61. Thompson K (1994) Predicting the fate of temperate species in response to human disturbance and global change. In: Boyle TJB, Boyle CEB (eds) Biodiversity, temperate ecosystems and global change. Springer, BerlinGoogle Scholar
  62. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  63. Vitasović Kosić I, Tardella FM, Ruscic M, Catorci A (2011) Assessment of floristic diversity, functional composition and management strategy of north Adriatic pastoral landscape (Croatia). Pol J Ecol 59:765–776Google Scholar
  64. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in North western Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  65. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227CrossRefGoogle Scholar
  66. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159CrossRefGoogle Scholar
  67. Willems JH (1990) Calcareous grasslands in continental Europe. In: Hiller SH, Walton DHW, Wells DA (eds) Calcareous grasslands: ecology and management. Bluntisham books, Cambridgeshire, pp 3–10Google Scholar
  68. Wilmanns O (1975) Junge Anderungen der Kaiserstuhler Halbtrockenresen. Daten u. Dokum. z. Umweltschutz 14:15–22Google Scholar
  69. Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162CrossRefGoogle Scholar
  70. Wisheu IC, Keddy PA (1992) Competition and centrifugal organization of plant communities: theory and tests. J Veg Sci 3:147–156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nataša Pipenbaher
    • 1
  • Mitja Kaligarič
    • 1
  • Norman W. H. Mason
    • 2
  • Sonja Škornik
    • 1
  1. 1.Biology Department, Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Landcare ResearchHamiltonNew Zealand

Personalised recommendations