Skip to main content

Advertisement

Log in

Impact of forest size on parasite biodiversity: implications for conservation of hosts and parasites

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Studies of biodiversity traditionally focus on charismatic megafauna. By comparison, little is known about parasite biodiversity. Recent studies suggest that co-extinction of host specific parasites with their hosts should be common and that parasites may even go extinct before their hosts. The few studies examining the relationship between parasite diversity and habitat quality have focused on parasites that require intermediate hosts and pathogens that require vectors to complete their life-cycles. Declines in parasite and pathogen richness in these systems could be due to the decline of any of the definitive hosts, intermediate hosts, or vectors. Here we focus on avian ectoparasites, primarily lice, which are host specific parasites with simple, direct, life-cycles. By focusing on these parasites we gain a clearer understanding of how parasites are linked to their hosts and their hosts’ environment. We compare parasite richness on birds from fragmented forests in southern China. We show that parasite richness correlates with forest size, even among birds that are locally common. The absence of some ectoparasite genera in small forests suggests that parasites can go locally extinct even if their hosts persist. Our data suggest that the conservation of parasite biodiversity may require preservation of habitat fragments that are sufficiently large to maintain parasite populations, not just their host populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan BF, Keesing F, Ostfeld RS (2003) Effects of habitat fragmentation on Lyme disease risk. Conserv Biol 17:267–272

    Article  Google Scholar 

  • Altizer S, Nunn CL, Lindenfors P (2007) Do threatened hosts have fewer parasites? A comparative study in primates. J Anim Ecol 76:301–314

    Article  Google Scholar 

  • Boyd RL, Nyari AS, Benz BW, Chen G (2008) Aves, province of Guizhou, China. Check List 4:107–114

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Clayton DH, Drown DM (2001) Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). J Parasitol 87:1291–1300

    PubMed  CAS  Google Scholar 

  • Clayton DH, Tompkins DM (1994) Ectoparasite virulence is linked to mode of transmission. Proc Roy Soc Lond B 256:211–217

    Article  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, New Jersey

    Google Scholar 

  • Colwell RK (2006) EstimateS: Statistical estimation of species richness and shared species from samples. V.8.2.0. purl.oclc.org/estimates

  • Colwell RK, Dunn RR, Harris NC (2012) Coextinction and extinction cascadees. Ann Rev Ecol Evol Syst 43:183–203

    Article  Google Scholar 

  • Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecol 81:734–748

    Google Scholar 

  • Dunn RR (2009) Coextinction: anecdotes, models and speculation. In: Tuvey ST (ed) Holocene extinctions. Oxford University Press, Oxford, pp 167–180

    Chapter  Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc Roy Soc Lond B 276:3037–3045

    Article  Google Scholar 

  • Durden LA, Keirans JE (1996) HostParasite coextinction and the plight of tick conservation. Am Entomol 42:87–91

    Google Scholar 

  • ESRI, Inc.: Environmental Systems Research Institute (2009) ArcGIS: Geographic information software, version 9.3. Redlands, California

  • Fair J, Paul E, Jones J (2010) Guidelines to the use of wild birds in research, 3rd edn. Ornithological Council, Washington, D.C.

    Google Scholar 

  • Harris NC, Dunn RR (2010) Using host associations to predict spatial patterns in the species richness of the parasites of North American carnivores. Ecol Lett 13:1411–1418

    Article  PubMed  Google Scholar 

  • Hastriter MW, Bush SE (2010) Notes and new records of Fleas (Insecta: Siphonaptera) from small mammals and birds collected in Southern China. Proc Entomol Soc Wash 112:214–228

    Article  Google Scholar 

  • Hechinger RF, Lafferty KD (2005) Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc Roy Soc Lond B 272:1059–1066

    Article  Google Scholar 

  • Hechinger RF, Lafferty KD, Huspeni TC, Brooks AJ, Kuris AM (2007) Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos fishes. Oecologia 151:82–92

    Article  PubMed  Google Scholar 

  • Hechinger RF, Lafferty KD, Kuris AM (2008) Trematodes indicate animal biodiversity in the Chilean Intertidal and Lake Tanganyika. J Parasitol 94:966–968

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron S, Parra J (2005) WorldClim—global climate data. http://www.worldclim.org. Accessed 8 July 2009

  • Hong Y, He F, Wirth R, Melville D, Pan-ji Z, Xia-zhi W, Gui-fu W, Zhi-yong L (2003) Little-known Oriental bird: Courtois’s Laughingthrush Garrulax galbanus courtoisi. Orient Bird Club Bull 38:35–40

    Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • IUCN: International Union for Conservation of Nature (2010) Garrulax courtoisi in IUCN (2010) IUCN red list of threatened species. Version 2010.3. http://www.iucnredlist.org. Accessed 1 Oct 2012

  • Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS (2004) Species coextinctions and the biodiversity crisis. Science 305:1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Kuris AM, Blaustein AR, Alio JJ (1980) Hosts as Islands. Am Nat 116:570–586

    Article  Google Scholar 

  • Lafferty KD, Holt RD (2003) How should environmental stress affect the population dynamics of disease? Ecol Lett 6:654–664

    Article  Google Scholar 

  • Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 44:925–931

    Article  Google Scholar 

  • Lafferty KD, Shaw JC, Kuris AM (2008) Reef fishes have higher parasite richness at unfished Palmyra Atoll compared to fished Kiritimati Island. EcoHealth 5:338–345

    Article  PubMed  Google Scholar 

  • Lampilla P, Mönkkönen M, Desrochers A (2005) Demographic responses by birds to forest fragmentation. Conserv Biol 19:1537–1546

    Article  Google Scholar 

  • Lyles AM, Dobson AP (1993) Infectious disease and intensive management: population dynamics, threatened hosts, and their parasites. J Zoo Wildl Med 3:315–326

    Google Scholar 

  • MacKinnon J (1997) Protected areas systems review of the Indo-Malayan realm. Asian Bureau for Conservation, Canterbury

    Google Scholar 

  • Malenke JR, Newbold N, Clayton DH (2011) Condition-specific competition governs the geographic distribution and diversity of ectoparasites. Am Nat 177:522–534

    Article  PubMed  CAS  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial pattern analysis program for categorical maps. www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 6 Feb 2009

  • Moir ML, Vesk PA, Brennan KEC, Keith DA, Hughes L, McCarthy MA (2010) Current constraints and future directions in estimating coextinction. Conserv Biol 24:682–690

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonesca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Olsson U, Alström P, Ericson PGP, Sundberg P (2005) Non-monophyletic taxa and cryptic species—evidence from a molecular phylogeny of leaf-warblers (Phylloscopus, Aves). Mol Phylo Evol 36:261–276

    Article  CAS  Google Scholar 

  • Pérez TM (1995) Seven species of Fainalges Gaud and Berla (Analgoidea, Xolalgidae) from Aratinga holochlora (Sclater) (Aves, Psittacidae). Zoo Scripta 24:203–223

    Article  Google Scholar 

  • Pérez TM (1997) Eggs of feather mite congeners (Acarina: Pterolichidae, Xolalgidae) from different species of new world parrots (Aves, Psittaciformes). Int J Acarol 23:103–106

    Article  Google Scholar 

  • Peterson AT, Bush SE, Spackman E, Swayne DE, Ip H (2008) Influenza A virus infections in land birds, People’s Republic of China. Emerg Infect Dis 14:1644–1646

    Article  PubMed  Google Scholar 

  • Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Institution Scholarly Press, Washington D.C.

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (2003) The chewing lice: world checklist and biological overview. Illinois Natural History Survey Special Publication 24, 501 pp

  • Price RD, Arnold DC, Bush SE (2006) Five new species of Myrsidea (Phthiraptera: Menoponidae) from Asian Babblers (Passeriformes: Timaliidae). J Kansas Entomol Soc 79:369–377

    Article  Google Scholar 

  • Ralph CJ, Sauer JR, Droege S (1995) Monitoring bird populations by point counts. U.S. Department of Agriculture, Forest Service, General Technical Report PSW-149

  • Robbins MB, Peterson AT, Nyari AS, Chen G, Davis TJ (2006) Ornithological surveys of two reserves in Guangxi province, China, 2004–2005. Forktail 22:140–146

    Google Scholar 

  • Roberts MG et al (2001) Parasite community ecology and biodiversity. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 63–82

    Google Scholar 

  • Rolstad J (1991) Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biol J Linn Soc 42:149–163

    Article  Google Scholar 

  • Rosenstock SS, Anderson DR, Giesen KM, Leukering T, Carter MF (2002) Landbird counting techniques: current practices and an alternative. Auk 119:46–53

    Google Scholar 

  • Thomas JA et al (2004) Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303:1879–1881

    Article  PubMed  CAS  Google Scholar 

  • Underhill LG, Gibbons DW (2002) Mapping and monitoring bird populations: their conservation uses. In: Norrisand K, Pain DJ (eds) Conserving bird biodiversity: general principles and their application. Cambridge University Press, Cambridge, pp 34–60

    Chapter  Google Scholar 

  • Vogeli MJ, Lemus A, Serrano D, Blanco G, Tella JL (2011) An island paradigm on the mainland: host population fragmentation impairs the community of avian pathogens. Proc Roy Soc Lond B. doi:10.1098/rspb.2010.1227

    Google Scholar 

  • Walther BA, Morand S (1998) Comparative performance of species richness estimation methods. Parasitol 116:395–405

    Article  Google Scholar 

  • Whiteman NK, Parker PG (2005) Using parasites to infer host population history: a new rationale for parasite conservation. Anim Conserv 8:175–181

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. W. Benz, R. L. Boyd, R. Brown, G. Chen, T. J. Davis, K. P. Johnson, B. Lim, R. Moyle, A. T. Peterson, A. Nyari and M. B. Robbins for various forms of assistance. We thank B. Newmark and C. Sekercioglu and an anonymous reviewer for helpful comments on the manuscript. We especially thank D. H. Clayton for his assistance in the field, and thoughtful comments on the manuscript. This work was supported by NSF DEB-0344430, DEB-0743491, DEB 1050706, and DEB 1050038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Bush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bush, S.E., Reed, M. & Maher, S. Impact of forest size on parasite biodiversity: implications for conservation of hosts and parasites. Biodivers Conserv 22, 1391–1404 (2013). https://doi.org/10.1007/s10531-013-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0480-x

Keywords

Navigation