Biodiversity and Conservation

, Volume 21, Issue 12, pp 3221–3241 | Cite as

Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats

  • Anna Mežaka
  • Guntis Brūmelis
  • Alfons Piterāns
Original Paper


Conservation and sustainable forestry are essential in a multi-functional landscape. In this respect, ecological studies on epiphytes are needed to determine abiotic and biotic factors associated with high diversity. The aim of the present study was to evaluate relative sensitivity of conservation targets (epiphytic bryophytes and lichens) in relation to contrasting environmental variables (tree species, tree diameter at breast height, bark crevice depth, pH, tree inclination, pH, forest stand age, area and type) in boreo-nemoral forests. The study was conducted in Latvian 34 woodland key habitat (WKH) boreo-nemoral forest stands. Generalized linear mixed models and canonical correspondence analysis showed that tree species and tree bark pH were the most important variables explaining epiphytic bryophyte and lichen composition and richness (total, Red-listed, WKH indicator species). Forest stand level factors, such as stand size and habitat type, had only minor influence on epiphytic species composition and richness. The results of the present study indicate a need to maintain the diversity of tree species and large trees, particularly Acer platanoides, Carpinus betulus, Fraxinus excelsior, Populus tremula, Tilia cordata, Ulmus glabra and Ulmus laevis in conservation of epiphytic bryophyte and lichen communities in the future.


Epiphytes Bryophytes Lichens Tree Woodland key habitats 



Thanks is given to Ligita Liepiņa (University of Latvia), Austra Āboliņa, Baiba Bambe for help in bryophyte identification. We are thankful to Vija Znotiņa for the fruitful discussions in early stages of the study. Thanks is given to Didzis Elferts for suggestions in statistical analysis. The present work is partly financially supported by projects - European Social Fund (ESF2004/0001/VPD1/ESF/PIAA/04/NP/, University of Latvia research project ZP2008/ZP08, Latvian Academy of Sciences grant 05.1512/147, Ministry of Education, Youth and Sport of the Czech Republic, DBU Stipendium für Nachwuchswissenschaftler, Forest Development Fund (grant Nr.180909/S96), European Community Mobility Programme Erasmus Mundus Action 2, Strand 1 (EMA2), Triple I 2011/2012. Thanks is given for three anonymous reviewer’s for valuable comments in manuscript improvement.


  1. Abolin AA (1968) Listostebelnije mhi Latviskoy SSR. Zinatne, RigaGoogle Scholar
  2. Āboliņa A (1994) Latvijas retās un aizsargājamās sūnas. LU ekoloǵiskā centra apgāds, RīgaGoogle Scholar
  3. Aude E, Poulsen RS (2000) Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. Appl Veg Sci 3:81–88CrossRefGoogle Scholar
  4. Baldwin LK, Bradfield GE (2007) Bryophyte responses to fragmentation in temperate coastal rainforests: a functional group approach. Biol Conserv 136:408–422CrossRefGoogle Scholar
  5. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, AssenGoogle Scholar
  6. Bates JW (1992) Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, Western Scotland: a multivariate analysis. J Ecol 80:163–179CrossRefGoogle Scholar
  7. Belinchòn R, Martinez I, Escudero A, Aragòn G, Valladares F (2007) Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. J Veg Sci 18:81–90Google Scholar
  8. Berg Å, Gärdenfors U, Hallingbäck T, Norén M (2002) Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden-analysis of data from the National survey. Biodivers Conserv 11:1479–1503CrossRefGoogle Scholar
  9. Berglund H, Jonsson BG (2003) Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biol Conserv 112:319–328CrossRefGoogle Scholar
  10. Billings WD, Drew WB (1938) Bark factors affecting the distribution of corticolous bryophytic communities. Am Midl Nat 20:302–330CrossRefGoogle Scholar
  11. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2008) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefGoogle Scholar
  12. Braak CJF, Šmilauer P (2002) Canoco reference manual and canocodraw for windows user’s guide: software for Canoco community ordination (version 4.5). Microcomputer, IthacaGoogle Scholar
  13. Brūmelis G, Jonsson BG, Kouki J, Kuuluvainen T, Shorokhova E (2011) Forest naturalness in northern Europe: perspectives on processes, structures and species diversity. Silva Fennica 45(5):807–821Google Scholar
  14. Cieśliński S, Czyżewska K, Klama H, Żarnowiec J (1996) Part three. Use of forest environment by cryptogamous plants, 13. Epiphytes and epiphytes. Phytocoenosis 8:15–35Google Scholar
  15. Ek T, Suško U, Auziņš R (2002) Methodology. Inventory of woodland key habitats. Forest State Service, Latvia, Regional Forestry Board, RigaGoogle Scholar
  16. Frego KA (2007) Bryophytes as potential indicators of forest integrity. For Ecol Manag 242:65–75CrossRefGoogle Scholar
  17. Glime JM (2007) Bryophyte ecology, vol 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Accessed 10 October 2009
  18. Grolle R, Long D (2000) An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. J Bryol 22:103–140Google Scholar
  19. de Groot R (2006) Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landscape Urban Plan 75:175–186CrossRefGoogle Scholar
  20. Gustafsson L, Eriksson I (1995) Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 32(2):412–424CrossRefGoogle Scholar
  21. Gustafsson L, De Jong J, Norén M (1999) Evaluation of Swedish woodland key habitats using Red-listed bryophytes and lichens. Biodivers Conserv 8:1101–1114CrossRefGoogle Scholar
  22. Gustafsson L, Hylander K, Jacobson C (2004) Uncommon bryophytes in Swedish forests-key habitats and production forests compared. For Ecol Manag 194:11–22CrossRefGoogle Scholar
  23. Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conserv 93:43–53CrossRefGoogle Scholar
  24. Hill MO, Bell N, Bruggeman-Nannenga MA, Brugués M, Cano MJ, Enroth J, Flatberg KI, Frahm J, Gallego MT, Garilleti R, Guerra J, Hedenäs L, Holyoak DT, Gyvönen J, Ignatov MS, Lara F, Mazimpaka V, Muńoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. bryological monograph. J Bryol 28:198–267CrossRefGoogle Scholar
  25. Holien H (1996) Influence of site and stand factors on the distribution of crustose lichens of the caliciales in a suboceanic spruce forest area in Central Norway. Lichenologist 28(4):315–330Google Scholar
  26. Jüriado I, Paal J, Liira J (2003) Epiphytic and epixylic lichen species diversity in Estonian natural forests. Biodivers Conserv 8:1587–1607CrossRefGoogle Scholar
  27. Jüriado I, Liira J, Paal J, Suija A (2009a) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers Conserv 18:105–125CrossRefGoogle Scholar
  28. Jüriado I, Liira J, Paal J (2009b) Diversity of epiphytic lichens in boreo-nemoral forests on the North-Estonian limestone escarpment: the effect of tree level factors and local environmental conditions. Lichenologist 41(1):81–96CrossRefGoogle Scholar
  29. Kouki J, Arnold K, Martikainen P (2004) Long-term persistence of aspen––a key host for many threatened species––is endangered in old-growth conservation areas in Finland. J Nat Conserv 12:41–52CrossRefGoogle Scholar
  30. Kuusinen M (1994) Epiphytic lichen diversity on Salix caprea in old-growth southern and middle boreal forests of Finland. Ann Bot Fenn 31:77–92Google Scholar
  31. Kuusinen M (1996) Epiphyte flora and diversity on basal trunks of six-growth forest tree species in southern and middle boreal Finland. Lichenologist 28:443–462Google Scholar
  32. Larsen RS, Bell JNB, James PW, Chimonides PJ, Rumsey FJ, Tremper A, Purvis OW (2006) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ Pollut 146:332–340PubMedCrossRefGoogle Scholar
  33. Latvijas dabas fonds (2007) Aizsargājamo ainavu apvidus “Ziemeļgauja”. Dabas aizsardzības plāns, RīgaGoogle Scholar
  34. Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes-evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182CrossRefGoogle Scholar
  35. Madžule L, Brūmelis G, Tjarve D (2012) Structures determining bryophyte species richness in a managed forest landscape in boreo-nemoral. Eur Biodivers Conserv 21:437–450CrossRefGoogle Scholar
  36. Mežaka A, Brūmelis G, Piterāns A (2008) The distribution of epiphytic bryophyte and lichen species in relation to phorophyte characters in Latvian natural old-growth broad leaved forests. Folia Cryptogam Estonica 44:89–99Google Scholar
  37. Ojala E, Mönkkönen M, Inkeröinen J (2000) Epiphytic bryophytes on European aspen Populus tremula in old-growth forests in northeastern Finland and in adjacent sites in Russia. Can J Bot 78:529–536Google Scholar
  38. Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. Br Lichen Soc 97:69–79Google Scholar
  39. Palmer MW (1986) Pattern in corticolous bryophyte communities of the North Carolina Piedmont: do mosses see the forest or the trees? Bryologist 89:59–65CrossRefGoogle Scholar
  40. Paltto H, Nordén B, Götmark F, Franc N (2006) At which spatial and temporal scales does landscape context affect local density of Red data book and Indicator species. Biol Conserv 133:442–454CrossRefGoogle Scholar
  41. Piterāns A (2001) Latvijas ķērpju konspekts. Latvijas Veģetācija 3:5–46Google Scholar
  42. Prieditis N (2002) Evaluation frameworks and conservation system of Latvian forests. Biodivers Conserv 11:1361–1375CrossRefGoogle Scholar
  43. Pykälä J, Heikkinen RK, Toivonen H, Jääskeläinen K (2006) Importance of forest act habitats for epiphytic lichens in Finnish managed forests. For Ecol Manag 223:84–92CrossRefGoogle Scholar
  44. Ranius T, Johansson P, Berg N, Niklasson M (2008) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J Veg Sci 19:653–662CrossRefGoogle Scholar
  45. Sjörs H (1963) Amphi-Atlantic zonation nemoral to Arctic. In: Löve A, Löve D (eds) North Atlantic biota and their history. The Macmillan Company, New York, pp 109–125Google Scholar
  46. Slack NG (1976) Host specificity of bryophytic epiphytes in eastern North America. J Hattori Bot Lab 41:107–132Google Scholar
  47. Smith AJA (1982) Epiphytes and epiliths. In: Smith AJA (ed) Bryophyte ecology. Chapman & Hall, LondonCrossRefGoogle Scholar
  48. Snäll T, Ehrlén J, Rydin H (2005) Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86:106–115CrossRefGoogle Scholar
  49. Stringer PW, Stringer MHL (1974) A quantitative study of corticolous bryophytes in the vicinity of Winnipeg, Manitoba. Bryologist 77:551–560CrossRefGoogle Scholar
  50. Szövényi ZSH, Tóth Z (2004) Phorophyte preferences of epiphytic bryophytes in a stream valley in the Carpathian Basin. J Bryol 26:137–146CrossRefGoogle Scholar
  51. The Council of the European Communities 1992 (EU 1992). Council Directive 92/43/EEC on the Conservation of natural habitats and wild fauna and flora. Official Journal L 206, 22/07/1992 P. 0007–0050Google Scholar
  52. Trynoski SE, Glime JM (1982) Direction and height of bryophytes on four species of Northern trees. Bryologist 85:281–300CrossRefGoogle Scholar
  53. Uliczka H, Angelstam P (1999) Occurrence of epiphytic macrolichens in relation to tree species and age in managed boreal forest. Ecography 22:396–405CrossRefGoogle Scholar
  54. Venables WN, Smith DM, R development team (2008). An introduction to RGoogle Scholar
  55. Villard MA, Jonsson BG (2009) Setting conservation targets for managed forest landscapes. Conservation biology 16. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Vimba E, Piterāns A (1996) Red data book of Latvia. Rare and endangered species of plants and animals. Fungi and Lichens, RigaGoogle Scholar
  57. VMD (2009) Homepage of Latvian State Forest Agency. Accessed 1 October 2009
  58. Wirth V (1995a) Die Flechten baden-württembergs. Teil 1. Eugen Ulmer, StuttgartGoogle Scholar
  59. Wirth V (1995b) Die Flechten baden-württembergs. Teil 2. Eugen Ulmer, StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Anna Mežaka
    • 1
  • Guntis Brūmelis
    • 1
  • Alfons Piterāns
    • 1
  1. 1.Department of Botany and Ecology, Faculty of BiologyUniversity of LatviaRigaLatvia

Personalised recommendations