Biodiversity and Conservation

, Volume 22, Issue 5, pp 1151–1166 | Cite as

Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria

  • Silvio Schueler
  • Stefan Kapeller
  • Heino Konrad
  • Thomas Geburek
  • Michael Mengl
  • Michele Bozzano
  • Jarkko Koskela
  • François Lefèvre
  • Jason Hubert
  • Hojka Kraigher
  • Roman Longauer
  • Ditte C. Olrik
Original Paper


Genetic resources of forest trees are considered as a key factor for the persistence of forest ecosystems because the ability of tree species to survive under changing climate depends strongly on their intraspecific variation in climate response. Therefore, utilizing available genetic variation in climate response and planting alternative provenances suitable for future climatic conditions is considered as an important adaptation measure for forestry. On the other hand, the distribution of adaptive genetic diversity of many tree species is still unknown and the predicted shift of ecological zones and species’ distribution may threaten forest genetic resources that are important for adaptation. Here, we use Norway spruce in Austria as a case study to demonstrate the genetic variation in climate response and to analyse the existing network of genetic conservation units for its effectiveness to safeguard the hotspots of adaptive and neutral genetic diversity of this species. An analysis of the climate response of 480 provenances, clustered into 9 groups of climatically similar provenances, revealed high variation among provenance groups. The most productive and promising provenance clusters for future climates originate from three regions that today depict the warmest and driest areas of the natural spruce distribution in Austria. Gap analysis of the Austrian genetic conservation units in the EUFGIS Portal suggests adequate coverage of the genetic hotspots in southern parts of Austria, but not in eastern and northern Austria. Therefore conservation measures and sustainable utilization of the valuable genetic resources in these regions need to be expanded to cover their high adaptive genetic variation and local adaptation to a warmer climate. The study shows that current conservation efforts need to be evaluated for their effectiveness to protect genetic resources that are important for the survival of trees in a future climate.


Forest genetic resources Climate response Intraspecific variation Adaptation Picea abies Genetic variation 



We are grateful to Ferdinand Müller and Alfred Bernhard—former colleagues of the BFW—who established the existing network of genetic conservation forests in Austria, and to Hans Herz, Peter Zwerger, Hans Hauer, Karl Schweinzer and Thomas Thalmayr (all BFW) for maintaining the network and the national database. We also thank the various forest owners in Austria for supporting the national genetic conservation network. Financial support for this work was provided by the European Commission under Council 720 Regulation (EC) No 870/2004 (EUFGIS action, Contract No AGRI-2006-0261). Also, we are grateful to two anonymous referees who provided helpful comments on an earlier draft of the manuscript.


  1. Bischoff A, Vonlanthen B, Steinger T, Müller-Schärer H (2006) Seed provenance matters—effects on germination of four plant species used for ecological restoration. Basic Appl Ecol 7:347–359CrossRefGoogle Scholar
  2. CBD (2002) Convention on biological diversity. Accessed 3 Dec 2011
  3. Collignon A-M, Van de Sype H, Favre J-M (2002) Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce. Can J For Res 3:266–282CrossRefGoogle Scholar
  4. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  5. Crowe KA, Parker WH (2005) Provisional breeding zone determination modeled as a maximal covering location problem. Can J For Res 35:1173–1182CrossRefGoogle Scholar
  6. Eriksson G, Namkoong G, Roberds JH (1993) Dynamic gene conservation for uncertain futures. For Ecol Manage 62:15–37CrossRefGoogle Scholar
  7. FHP (2010) Information der FHP Kooperationsplattform Forst Holz Papier. Accessed 3 Dec 2011
  8. Geburek T, Robitschek K, Milasowsky N (2008) A tree of many faces: why are there different crown types in Norway spruce (Picea abies [L.] Karst.)? Flora 203:126–133CrossRefGoogle Scholar
  9. Grabner M, Karanitsch-Ackerl S, Schüler S (2010) The influence of drought on density of Norway spruce wood. In: Kúdela J, Lagaňa R (eds) Wood structure and properties, vol 10. Arbora Publishers, Zvolen, pp 27–33Google Scholar
  10. Hamann A, Gylander T, Chen P (2011) Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genet Genomes 7:399–408CrossRefGoogle Scholar
  11. Hanewinkel M, Hummel S, Cullmann DA (2010) Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. For Ecol Manage 259:710–719CrossRefGoogle Scholar
  12. Häusler A, Scherer-Lorenzen M (2002) Nachhaltige Forstwirtschaft in Deutschland im Spiegel des ganzheitlichen Ansatzes der Biodiversitätskonvention. BfN-Skripten 62:66Google Scholar
  13. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  14. Kapeller S, Lexer MJ, Geburek T, Hiebl J, Schueler S (2012) Intraspecific variation in climate response of Norway spruce in the Eastern Alpine range: selecting appropriate provenances for future climate. For Ecol Manage 271:46–57CrossRefGoogle Scholar
  15. Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221CrossRefGoogle Scholar
  16. Konrad H, Mengl M, Geburek T (2011) Genetische Inventur der Fichte in Österreich: große Vielfalt, unterschätzte Naturnähe. BFW Praxisinformation 24:22–24Google Scholar
  17. Kremer A, Le Corre V, Petit RJ, Ducousso A (2010) Historical and contemporary dynamics of adaptive differentiation in European oaks. In: DeWoody A, Bickham J, Michler C, Nichols K, Rhodes G, Woeste K (eds) Molecular approaches in natural resource conservation. Cambridge University Press, New York, pp 101–117Google Scholar
  18. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer B, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. doi: 10.1111/j.1461-0248.2012.01746.x CrossRefGoogle Scholar
  19. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055PubMedCrossRefGoogle Scholar
  20. Mátyás C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54CrossRefGoogle Scholar
  21. Maxted N, Dulloo E, Ford-Lloyd BV, Iriono JM, Jarvis A (2008) Gap analysis: a tool for complementary genetic conservation assessment. Divers Distrib 14:1018–1030CrossRefGoogle Scholar
  22. Mengl M, Geburek T, Schueler S (2009) Geographical pattern of haplotypic variation in Austrian native stands of Picea abies. Dendrobiology 61Suppl:117–118Google Scholar
  23. Milad M, Schaich H, Konold W (in press) Adapting forest management and conservation to climate change: insights of current forestry practice in Germany. Biodivers ConservGoogle Scholar
  24. Nather J, Holzer K (1979) Über die Bedeutung und die Anlage von Kontrollflächen zur Prüfung von anerkanntem Fichtenpflanzgut. Informationsdienst Forstliche Bundesversuchsanstalt Wien 181Google Scholar
  25. O’Brien EK, Mazanec RA, Krauss SL (2007) Provenance variation of ecologically important traits of forest trees: implications for restoration. J Appl Ecol 44:583–593CrossRefGoogle Scholar
  26. Österreichische Waldinventur (2007/2009). Accessed 3 Dec 2011
  27. Pawson S, Brin A, Brockerhoff EG, Lamb D, Lindenmayer DB, Payn TW, Paquette A, Parrotta JA (in press) Potential impacts of climate change on biodiversity in plantation forests. Biodivers ConservGoogle Scholar
  28. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  29. Petit RJ, Aguinagalde I, Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck G, Demesure-Musch B, Palmé A, Pedro Marti J, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  30. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organisation of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701PubMedCrossRefGoogle Scholar
  31. Prskawetz M, Gschwantner T (2005) Sekundäre Nadelwälder in Österreich. BFW-Praxisinformation 6:11–13Google Scholar
  32. Ravazzi C (2002) Late Quaternary history of spruce in southern Europe. Rev Palaeobot Palynol 120:131–177CrossRefGoogle Scholar
  33. Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA Jr (1999) Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol Monogr 69:375–407Google Scholar
  34. Rehfeldt GE, Ying CC, Wykoff WR (2001) Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim Change 50:355–376CrossRefGoogle Scholar
  35. Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109:1283–1294PubMedCrossRefGoogle Scholar
  36. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619CrossRefGoogle Scholar
  37. Schaich H, Milad M (in press) Forest biodiversity in a changing climate: which logic for conservation strategies. Biodivers ConservGoogle Scholar
  38. Schiessl E, Grabner M, Golesch G, Geburek T, Schueler S (2010) Sub-montane Norway spruce as alternative seed source for a changing climate? A genetic and growth analysis at the fringe of its natural range in Austria. Silva Fennica 44:615–627Google Scholar
  39. Schüler S, Kapeller S (2010) Klima-Response von Fichtenherkünften im Alpenraum. Eine Adaptionsmöglichkeit für die österreichische Forstwirtschaft. Endbericht von StartClim2009.B. In: StartClim2009 (ed) Anpassung an den Klimawandel: Beiträge zur Erstellung einer Anpassungsstrategie für Österreich. BMLFUW, BMWF, BMWFJ, ÖBF, Auftraggeber. Accessed 03 Dec 2011
  40. Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263PubMedCrossRefGoogle Scholar
  41. Spieker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. J Environ Manage 67:55–65CrossRefGoogle Scholar
  42. St. Clair JB, Howe GT (2007) Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Glob Change Biol 13:1441–1454Google Scholar
  43. St. Clair JB, Mandel NL, Vance-Borland KW (2005) Genecology of Douglas-fir in western Oregon and Washington. Annals Bot 96:1199–1214Google Scholar
  44. Terhürne-Berson R (2005) Changing distribution patterns of selected conifers in the Quaternary of Europe caused by climatic variations. PhD thesis, University Bonn, Bonn, p 141Google Scholar
  45. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362CrossRefGoogle Scholar
  46. Tollefsrud MM, Kissling R, Gugerli F, Johnson O, Skrøppa T, Cheddadi R, Van der Knapp WO, Lataàowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150PubMedCrossRefGoogle Scholar
  47. Wang T, Hamann A, Yanchuk A, O’Neill GA, Aitken SN (2006) Use of response functions in selecting lodgepole pine populations for future climates. Glob Change Biol 12:2404–2416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Silvio Schueler
    • 1
  • Stefan Kapeller
    • 1
  • Heino Konrad
    • 1
  • Thomas Geburek
    • 1
  • Michael Mengl
    • 1
  • Michele Bozzano
    • 2
  • Jarkko Koskela
    • 2
  • François Lefèvre
    • 3
  • Jason Hubert
    • 4
  • Hojka Kraigher
    • 5
  • Roman Longauer
    • 6
  • Ditte C. Olrik
    • 7
  1. 1.Department of Genetics, Federal Research and Training Centre for ForestsNatural Hazards and LandscapesViennaAustria
  2. 2.Bioversity InternationalMaccarese, RomeItaly
  3. 3.INRA-Ecologie des Forêts MéditerranéennesAvignonFrance
  4. 4.Forest ResearchNorthern Research StationMidlothianUK
  5. 5.Slovenian Forestry InstituteLjubljanaSlovenia
  6. 6.National Forest CentreZvolenSlovakia
  7. 7.Danish Forest and Nature AgencyGraestedDenmark

Personalised recommendations