Biodiversity and Conservation

, Volume 21, Issue 4, pp 993–1013 | Cite as

Rates of description of Phytoseiidae mite species (Acari: Mesostigmata): space, time and body size variations

  • M.-S. Tixier
  • S. Kreiter
  • M. Douin
  • G. J. Moraes
Original Paper


This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.


Time accumulation curves Biodiversity Predatory mite Taxonomy Latitude range Size 


  1. Allsopp PG (1997) Probability of describing an Australian scarab beetle: influence of body size and distribution. J Biogeogr 24:717–724CrossRefGoogle Scholar
  2. Banckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424CrossRefGoogle Scholar
  3. Baselga A, Novoa F (2006) Diversity of Chrysomelidae (Coleoptera) in Galicia, Northwest Spain: estimating the completeness of the regional inventory. Biodivers Conserv 15:205–230CrossRefGoogle Scholar
  4. Baselga A, Hortal J, Jimenez-Valverde A, Gomez JF, Lobo JM (2007) Which leaf beetles have not yet been described? Determinants of the description of western palaearctic Aphtona species (Coleoptera: Chrysomelidae). Biodivers Conserv 16:1409–1421CrossRefGoogle Scholar
  5. Bergmann C (1847) Uberdie Verhaltnisse der Warmekonomie der Thiere zuihrer Grosse [The relation of energy budget to body size in animals]. Gottinger Studien 1:595–708Google Scholar
  6. Blackburn TM, Gaston KJ (1995) What determines the probability of discovering a species—a study of South-American oscine passerine birds. J Biogeogr 22(1):7–14CrossRefGoogle Scholar
  7. Blackburn TM, Gaston KJ (1996) A sideways look at patterns in species richness or why there are so few species outside the tropics. Biodivers Lett 3:44–53CrossRefGoogle Scholar
  8. Brehm G, Fiedler K (2004) Bergmann's rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Global Ecol Biogeogr 13:7–14Google Scholar
  9. Buzas MA, Collins LS, Culver SJ (2002) Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proc Natl Acad Sci USA 99:7841–7843PubMedCrossRefGoogle Scholar
  10. Cabrero-Sañudo FJ, Lobo JM (2003) Estimating the number of species not yet described and their characteristics: the case of Western Palaearctic dung beetle species (Coleoptera, Scarabaeoidea). Biodivers Conserv 12:147–166CrossRefGoogle Scholar
  11. Chant DA (1959) Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of thirty-eight new species. Can Entomol Supplement 12Google Scholar
  12. Chant DA (1992) Trends in the discovery of new species and adult setal patterns in the family Phytoseiidae (Acari: Gamasina), 1839–1989. Int J Acarol 18:323–362CrossRefGoogle Scholar
  13. Chant DA (1993) Adaptive radiation in the family Phytoseiidae (Acari: Gamasina) as reflected by adult idiosomal setation. Int J Acarol 19:203–223CrossRefGoogle Scholar
  14. Chant DA, McMurtry JA (2007) Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, MichiganGoogle Scholar
  15. Cushman JH, Lawton JH, Manly BFJ (1993) Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95:30–37Google Scholar
  16. Diaz-Frances E, Soberon J (2005) Statistical estimation and model selection of species-accumulation functions. Conserv Biol 19(2):569–573CrossRefGoogle Scholar
  17. Eggleton P (1999) Termite species description rates and the state of termite taxonomy. Insectes Sociaux 46:1–5CrossRefGoogle Scholar
  18. Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size-climate relationships of European spiders. J Biogeogr 37:477–485Google Scholar
  19. Flather CH (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. J Biogeogr 23:155–168CrossRefGoogle Scholar
  20. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227PubMedCrossRefGoogle Scholar
  21. Gaston KJ, Blackburn TM, Loder N (1995a) Which species are described first?: the case of North American butterflies. Biodivers Conserv 4:119–127CrossRefGoogle Scholar
  22. Gaston KJ, Malcolm JS, Crook A (1995b) Patterns in species description: a case study using Geometridae (Lepidoptera). Biol J Linn Soc 55:225–237CrossRefGoogle Scholar
  23. Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell, OxfordCrossRefGoogle Scholar
  24. Gibbons MJ, Richardson AJ, Angel MV, Buecher E, Esnal G, Fernandez Alamo MA, Gibson R, Itoh H, Pugh P, Thuesen E, Boettger-Schnack R (2005) What determines the likelihood of species discovery in marine holozooplankton: is size, range or depth important? Oikos 109:567–576CrossRefGoogle Scholar
  25. Godfray HCJ, Lewis OT, Memmot J (1999) Studying insect diversity in the tropics. Phil Trans R Soc Lond Biol Sci 354:1811–1824CrossRefGoogle Scholar
  26. Hamilton AJ, Basset Y, Benke KK, Grimbacher PS, Miller SE, Novotny V, Samuelson GA, Stork NE, Weiblen GD, Yen JDL (2010) Quantifying uncertainty in estimation of tropical arthropod species richness. Am Nat 176(1):90–95PubMedCrossRefGoogle Scholar
  27. Hawkins BA, DeVries PJ (1996) Altitudinal gradients inbody sizes of Costa Rican butterflies. Acta Oecologica 17:185–194Google Scholar
  28. Hawkins BA, Lawton JH (1995) Latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia 102:31–36Google Scholar
  29. Jimenez-Valverde A, Jimenez Mendoza S, Martin Cano J, Munguira ML (2006) Comparing relative model fit of several species-accumulation functions to local Papilionidea and Hesperioidea butterfly inventories of Mediterranean habitats. Biodivers Conserv 15:177–190CrossRefGoogle Scholar
  30. Jones OR, Purvis A, Baumgart E, Quicke DLJ (2009) Using taxonomic revision data to estimate the geographic and taxonomic distribution of undescribed species richness in the Braconidae (Hymenoptera: Ichneumonoidea). Insect Conserv Divers 2(3):204–212. doi: 10.1111/j.1752-4598.2009.00057.x CrossRefGoogle Scholar
  31. Karban R, English-Loeb G, Walker MA, Thaler J (1995) Abundance of phytoseiid mites on Vitis sp.: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp Appl Acarol 19:189–197CrossRefGoogle Scholar
  32. Koch CL (1839) Deutschlands Crustaceen, Myriapoden und Arachniden. Regensburg 5–6(25), 22, 5–6(27), 6, 13Google Scholar
  33. Kostiainen TS, Hoy MA (1996) The Phytoseiidae as biological control agents of pest mites and insects. A bibliography. Monograph 17, University of Florida, Agricultural Experiment Station, GainesvilleGoogle Scholar
  34. Kreiter S, Tixier M-S (2006) A new genus and a new species of phytoseiid mites (Acari: Mesostigmata) from Southern Tunisia with analysis and discussion on its phylogenetic position. Zootaxa 1237:1–18Google Scholar
  35. Kreiter S, Tixier M-S, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31:648–660CrossRefGoogle Scholar
  36. Mao CX, Colwell RK (2005) Estimation of species richness: mixture models, the role of rare species, and inferential challenges. Ecology 86(5):1143–1153. doi: 10.1890/04-1078 CrossRefGoogle Scholar
  37. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321PubMedCrossRefGoogle Scholar
  38. Meier R, Dikow T (2004) Significance of specimen databases from taxonomic revisions for estimating and mapping the global species diversity of invertebrates and repatriating reliable specimen data. Conserv Biol 8(2):478–488. doi: 10.1111/j.1523-1739.2004.00233.x CrossRefGoogle Scholar
  39. Mora C, Tittensor DP, Myers RA (2008) The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc R Soc B 275:149–155PubMedCrossRefGoogle Scholar
  40. Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494Google Scholar
  41. Nesbitt HHJ (1951) A taxonomic study of the Phytoseiidae (Family Laelaptidae) predaceous upon Tetranychidae of economic importance. Zool Verhand 12:64 pp + 32 platesGoogle Scholar
  42. Odegaard F (2000) How many species of arthropods? Erwin’s estimate revised. Biol J Lin Soc 71(4):583–597CrossRefGoogle Scholar
  43. Price PW, Diniz IR, Morais HC, Marques ESA (1995) The abundance of insect herbivore species in the tropics: the high local richness of rare species. Biotropica 27(4):468–478. doi: 10.2307/2388960 CrossRefGoogle Scholar
  44. Ragusa S (2003) Description of a new genus and of two new species of phytoseiid mites (Parasiformes, Phytoseiidae) collected in Chile. Acarologia 43:337–344Google Scholar
  45. Rosenzweig ML (1992) Species diversity gradients: we know more and less than we thought. J Mammal 73:715–730CrossRefGoogle Scholar
  46. Sihvonen P, Siljander M (2005) Species diversity and geographical distribution of Scopulini moths (Lepidoptera: Geometridae, Sterrhinae) on a world-wide scale. Biodivers Conserv 14:703–721. doi: 10.1007/s10531-004-3921-8 CrossRefGoogle Scholar
  47. StatSoft France (2008) STATISTICA version 7.1.
  48. Storch NE (1993) How many species are there? Biodivers Conserv 2:215–232CrossRefGoogle Scholar
  49. Storch D, Gaston KJ (2004) Untangling ecological complexity on different scales of space and time. Basic Appl Ecol 5:389–400CrossRefGoogle Scholar
  50. Thompson GG, Withers PC (2003) Effect of richness and relative abundance on the shape of the species accumulation curve. Austral Ecol 28:355–360. doi: 10.1046/j.1442-9993.2003.01294.x CrossRefGoogle Scholar
  51. Tixier M-S, Kreiter S (2009) Arthropods in biodiversity hotspots: the case of the Phytoseiidae (Acari: Mesostigmata). Biodivers Conserv 18:507–527. doi: 10.1007/s10531-008-9517-y CrossRefGoogle Scholar
  52. Tixier M-S, Kreiter S, Moraes GJ (2008) Biogeographic distribution of the mites of the family Phytoseiidae (Acari: Mesostigmata). Biol J Lin Soc 93:845–856. doi: 10.1111/j.1095-8312.2007.00937.x CrossRefGoogle Scholar
  53. Tjorve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835CrossRefGoogle Scholar
  54. Walter DE (1992) Leaf surface structure and the distribution of Phytoseius mites (Acarina: Phytoseiidae) in south-eastern Australian forests. Austr J Zool 40:593–603CrossRefGoogle Scholar
  55. Walter DE (1996) Living on leaves: mites, tomenta and leaf domatia. Ann Rev Entomol 41:101–114CrossRefGoogle Scholar
  56. Wiens JJ, Servedio MR (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proc R Soc Lond B 267:631–636. doi: 10.1098/rspb.2000.1049 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M.-S. Tixier
    • 1
  • S. Kreiter
    • 1
  • M. Douin
    • 1
  • G. J. Moraes
    • 2
  1. 1.Montpellier SupAgro, UMR CBGP (INRA/IRD/CIRAD/SupAgro)Montferrier sur Lez cedexFrance
  2. 2.Departamento de Entomologia e AcarologiaESALQ, University of Sao PauloPiracicabaBrazil

Personalised recommendations