Biodiversity and Conservation

, Volume 21, Issue 9, pp 2181–2193 | Cite as

Species richness of plants and fungi in western Panama: towards a fungal inventory in the tropics

  • M. Piepenbring
  • T. A. Hofmann
  • M. Unterseher
  • G. Kost
Original Paper


In order to document the species richness of plants and fungi in a tropical area, a trail of 500 m in tropical lowlands in the Chiriquí province, on the Pacific side of western Panama, was sampled each month during 2 years with 2 h dedicated to plants and 2 h dedicated to fungi, each by two botanists or mycologists respectively. The 24 sampling events yielded approximately 4,000 records of plants corresponding to 311 species as well as 1,614 records of fungi corresponding to approximately 567 species. Lists of more or less certain names of plants and fungi as well as voucher specimens are provided. The randomized species accumulation curve for plants approaches an asymptote and estimators yield stable values of 310–318 predicted plant species in the area of investigation. The curve for records of fungal species, however, did not saturate and all applied estimator functions failed to predict the total richness of fungi for the area convincingly. Two plant collections correspond to new records for Panama and 54 species and infraspecific taxa are new for the Chiriquí province. The identification of fungi is still in process and yielded two species probably new to science as well as 17 new records of species for Panama to date. In order to assess biodiversity patterns (e.g. fungi to plant ratios) of tropical fungi more accurately, it is necessary to repeat such investigations in other areas and to improve the tools for taxonomic identification of these highly diverse but mostly microscopic organisms.


Chiriquí province Diversity of fungi Diversity of plants Estimators New records Tropical fungi Tropical plants Taxonomic identifications 



The authors thank numerous students and colleagues who collaborated in the field, namely J. M. Andrade, K. Araúz, G. Bethancourt, E. Caballero, L. Cáceres, O. Cáceres, V. Carrión, S. Castillo, D. Cruz, M. Cuevas, J. Espinosa, A. Gockele, A. K. Gómez, J. González, L. González, B. Henríquez, R. Kirschner, M. Mastrolinardo, L. Mayorga, E. Miranda, N. Moran, J. de Quiel, J. Ramos, I. de Rincón, S. Rudolph, L. Saldaña, K. Samaniego, I. Samudio, G. Steinbeisser, and J. Weisenborn. For identification of plants we are grateful to R. Mangelsdorff, R. Rincón, M. Stapf, and further members of the staff of the herbarium PMA, for the identification of fungi we were supported by K. Araúz, J. Fournier, R. Kirschner, R. Lücking, O. Perdomo, H. Sipmann, T. Trampe, N. Völxen, and E. Yilmaz. We thank R. Mangelsdoff for interesting discussions and help to improve the manuscript. S. Cronje improved the English of the manuscript. The institutional support of the Universidad Autónoma de Chiriquí (UNACHI), the National Authority of the Environment (ANAM, Panama), and the German Academic Exchange Service (DAAD) is acknowledged.

Supplementary material

10531_2011_213_MOESM1_ESM.doc (409 kb)
Supplementary material 1 (DOC 409 kb)
10531_2011_213_MOESM2_ESM.doc (960 kb)
Supplementary material 2 (DOC 960 kb)
10531_2011_213_MOESM3_ESM.doc (23 kb)
Supplementary material 3 (DOC 23 kb)
10531_2011_213_MOESM4_ESM.doc (41 kb)
Supplementary material 4 (DOC 41 kb)
10531_2011_213_MOESM5_ESM.doc (88 kb)
Supplementary material 5 (DOC 88 kb)


  1. Arnold AE, Maynard Z, Gilbert GS et al (2000) Are tropical fungal endophytes hyperdivers? Ecol Lett 3:267–274CrossRefGoogle Scholar
  2. Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287PubMedCrossRefGoogle Scholar
  3. Buée M, Reich M, Murat C et al (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456PubMedCrossRefGoogle Scholar
  4. Cannon PF (1999) Options and constraints in rapid diversity analysis of fungi in natural ecosystems. Fungal Divers 2:1–15Google Scholar
  5. Cannon PF, Kirk PM, Cooper JA, Hawksworth DL (2001) Microscopic fungi. In: Hawksworth DL (ed) The changing wildlife of Great Britain and Ireland. Taylor & Francis, London, pp 114–125Google Scholar
  6. Cantrell SA (2004) A comparison of two sampling strategies to assess discomycete diversity in wet tropical forests. Caribbean J Sci 40:8–16Google Scholar
  7. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791PubMedCrossRefGoogle Scholar
  8. Chao A, Colwell RK, Lin C-W et al (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133PubMedCrossRefGoogle Scholar
  9. Chaverri P, Vílchez B (2006) Hypocrealean (Hypocreales, Ascomycota) fungal diversity in different stages of tropical forest succession in Costa Rica. Biotropica 38:531–543CrossRefGoogle Scholar
  10. Coddington JA, Agnarsson I, Miller JA et al (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78:573–584PubMedCrossRefGoogle Scholar
  11. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B 345:101–118CrossRefGoogle Scholar
  12. Correa MD, Galdames C, de Stapf MS (2004) Catálogo de las plantas vasculares de Panamá. Quebecor World, BogotaGoogle Scholar
  13. Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71PubMedCrossRefGoogle Scholar
  14. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  15. Guevara R, Dirzo R (1998) A rapid method for the assessment of the macromycota. The fungal community of an evergreen cloud forest as an example. Can J Bot 76:596–601Google Scholar
  16. Guzmán G, Piepenbring M (2011) Los hongos de Panamá. Smithsonian Tropical Research Institute, Panama; Instituto de Ecología, Xalapa, Mexico; Universidad Autónoma de Chiriquí, David, Panama; Ideogramma, MexicoGoogle Scholar
  17. Hammel BE (2003) Dioscoreaceae. In: Hammel BE, Grayum MH, Herrera C, Zamora N (eds) Manual de plantas de Costa Rica. Vol. II. Gimnospermas y monocotiledóneas (Agavaceae-Musaceae). Monog Syst Botan 92:552–565Google Scholar
  18. Haug I, Wubet T, Weiss M et al (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. Trop Ecol 51:125–148Google Scholar
  19. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  20. Hawksworth DL (1997) Inventorying a tropical fungal biota: intensive and extensive approaches. In: Janardhanan KK, Rajendran C, Natarajan K, Hawksworth DL (eds) Tropical mycology. Science Publishers, India, pp 29–50Google Scholar
  21. Hawksworth DL (1998) The consequences of plant extinctions for their dependent biotas an overlooked aspect of conservation science. In: Peng C-I, Lowry PP (eds) Rare, threatened, and endangered floras of Asia and the Pacific rim, vol Academia Sinica Monograph Series 16. Institute of Botany, Taipei, pp 1–15Google Scholar
  22. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  23. Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18Google Scholar
  24. Hawksworth DL, Mueller GM (2005) Fungal communities: their diversity and distribution. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Taylor & Francis, New York, pp 27–37CrossRefGoogle Scholar
  25. Hibbett DS, Ohman A, Glotzer D et al (2011) Progress in molecular and morphological taxon discovery in fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47CrossRefGoogle Scholar
  26. Hyde KD, Bussaban B, Paulus B et al (2007) Diversity of saprobic microfungi. Biodivers Conserv 16:7–35CrossRefGoogle Scholar
  27. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448PubMedCrossRefGoogle Scholar
  28. Karasch P (2005) Beiträge zur Kenntnis der Pilzflora des Fünfseenlandes V. Ökologische Pilzkartierung auf einer Huteweide im Landkreis Weilheim (Oberbayern). Z Mykol 71:85–112Google Scholar
  29. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisbys dictionary of the fungi. CABI Bioscience. CAB International, WallingfordGoogle Scholar
  30. Lensing JR, Wise DH (2006) Impact of changes in rainfall amounts predicted by climate-change models on decomposition in a deciduous forest. Appl Soil Ecol 35:523–534CrossRefGoogle Scholar
  31. Lilleskov EA, Fahey TJ, Horton TR et al (2002) Belowground ectomycorrhizal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115CrossRefGoogle Scholar
  32. Lodge DJ, Cantrell S (1995a) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73(Suppl 1):S1391–S1398CrossRefGoogle Scholar
  33. Lodge DJ, Cantrell S (1995b) Diversity of litter agarics at Cuyabeno, Ecuador: calibrating sampling efforts in tropical rainforest. Mycologist 9:149–151CrossRefGoogle Scholar
  34. Mangelsdorff R, Piepenbring M, Perdomo O Diversity of Pucciniales, and their hosts on selected sites in western Panama. Biodivers Conserv (this issue)Google Scholar
  35. Morales JF (2003) Poaceae. In: Hammel BE, Grayum MH, Herrera C, Zamora N (eds) Manual de plantas de Costa Rica. Vol. III. Monocotiledóneas (Orchidaceae-Zingiberaceae). Monog Syst Botan 93:598–821Google Scholar
  36. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5CrossRefGoogle Scholar
  37. Mueller GM, Bills GF, Foster MS (eds) (2004) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic Press, AmsterdamGoogle Scholar
  38. O’Hara RB (2005) Species richness estimators: how many species can dance on the head of a pin? J Anim Ecol 74:375–386CrossRefGoogle Scholar
  39. Oksanen J, Blanchet FG, Kindt R et al (2010) Vegan: community ecology package. Ordination methods, diversity analysis, and other functions for community and vegetation ecologists. Available at
  40. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  41. Pegler DN (1997) The larger fungi of Borneo. Natural History Publications, Kota KinabaluGoogle Scholar
  42. Pérez JM, Camino M (2000) Riqueza micológica en un sitio natural del Jardín Botánico Nacional. Rev Jard Bot Nac Univ Habana 21:133–137Google Scholar
  43. Piepenbring M (2006) Checklist of fungi in Panama. Puente Biológico (Revista Científica de la Universidad Autónoma de Chiriquí) 1:1–190 + 5 platesGoogle Scholar
  44. Piepenbring M (2011) Fungi of Panama. Available by STRI. Cited 25 Aug 2011
  45. Piepenbring M, Hofmann TA, Kirschner R et al (2011) Diversity patterns of Neotropical plant parasitic microfungi. Ecotropica 17:27–40Google Scholar
  46. Pirozynski KA (1972) Microfungi of Tanzania. I. Miscellaneous fungi on oil palm. II. New Hyphomycetes. Mycol Pap 129:1–64 + 1 plateGoogle Scholar
  47. R Development Core Team (2010) R: a language and environment for statistical computing. Available at
  48. Rossman AY (1997) Biodiversity of tropical microfungi: an overview. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 1–10Google Scholar
  49. Rossman AY, Tulloss RE, O’Dell TE et al (1998) Protocols for an all taxa biodiversity inventory of fungi in a Costa Rican conservation area. Parkway, BooneGoogle Scholar
  50. Schmit JP, Lodge DF (2005) Classical methods and modern analysis for studying fungal diversity. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Taylor & Francis, New York, pp 193–214CrossRefGoogle Scholar
  51. Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111CrossRefGoogle Scholar
  52. Unterseher M, Schnittler M, Dormann C et al (2008) Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol Lett 282:205–213PubMedCrossRefGoogle Scholar
  53. Unterseher M, Jumpponen A, Öpik M et al (2011a) Species abundance distributions and richness estimations in fungal metagenomics–lessons learned from community ecology. Mol Ecol 20:275–285PubMedCrossRefGoogle Scholar
  54. Unterseher M, Westphal B, Amelang N et al (2011b) 3,000 species and no end—species richness and community pattern of woodland macrofungi in Mecklenburg-Western Pomerania, Germany. Mycol Progress (in press). doi: 10.1007/s11557-011-0769-7
  55. Van Herk CM, Aptroot A, Van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154CrossRefGoogle Scholar
  56. Watling R (1995) Assessment of fungal diversity: macromycetes, the problems. Can J Bot 73(Suppl 1):S15–S24CrossRefGoogle Scholar
  57. Watling R (2010) The hidden kingdom. In: Boddy L, Coleman M (eds) From another kingdom, the amazing world of fungi. Royal Botanic Garden Edinburgh, EdinburghGoogle Scholar
  58. Woodson RE, Schery RW and collaborators (1943–1980) Flora of Panama. Ann Missouri Bot Gard 30–67Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Piepenbring
    • 1
  • T. A. Hofmann
    • 2
  • M. Unterseher
    • 3
  • G. Kost
    • 4
  1. 1.Department of MycologyBiologicumFrankfurt am MainGermany
  2. 2.Universidad Autónoma de ChiriquíDavidPanamá
  3. 3.Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  4. 4.Department of Systematic Botany & MycologyUniversity of MarburgMarburgGermany

Personalised recommendations