Biodiversity and Conservation

, Volume 20, Issue 13, pp 3239–3250 | Cite as

Subtropical Brazilian mangroves as a refuge of crab (Decapoda: Brachyura) diversity

  • Karine Delevati Colpo
  • Mônica Mungai Chacur
  • Fernanda Jordão Guimarães
  • Maria Lúcia Negreiros-Fransozo
Original Paper


This study characterized seven mangrove areas of different sizes, located on the southeastern Brazilian coast, with respect to their sediment and vegetation features. We also estimated the richness and composition of the brachyuran assemblages in these mangroves. Crab, vegetation and sediment data were collected during low tide. The larger mangroves showed richer and complex forests, and may be more ecologically stable than smaller mangroves. Twenty-eight species of crabs were recorded, members of nine families: Panopeidae, Pinnotheridae, Gecarcinidae, Grapsidae, Sesarmidae, Varunidae, Ocypodidae, Ucididae, and Portunidae. Ocypodoidea predominated over Grapsoidea in the smaller mangrove areas in pioneer stages of forest establishment, whereas the opposite was recorded for larger and more stable mangroves, where the forest can reach advanced stage of development. Comprido is a small mangrove, but its crab assemblage was similar to the larger ones, probably because of other factors not investigated here (e.g., megalopa settling rate). This study provided basic knowledge for developing conservation strategies for vulnerable mangrove ecosystems.


Brazil Crab assemblages Forest features Sediment Subtropical mangroves 



To FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financing this project (#94/4878-8; #95/8520-3; #98/3134-6; #98/15292-5), and to the members of Nebecc for their help during field activities (Alvaro L. D. Reigada, Jelly M. Nakagaki, and Cecilia M. Guerrero Ocampo). All the collections of crabs were carried out in compliance with current federal and state laws (IBAMA and ICMBio). The authors are grateful to Dr. Janet W. Reid for English improvement in the draft of the manuscript, and to the anonymous reviewers for their helpful comments.

Supplementary material

10531_2011_125_MOESM1_ESM.doc (73 kb)
Supplementary material 1 (DOC 73 kb)


  1. Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Est Coast Shelf Sci 76:1–13CrossRefGoogle Scholar
  2. Ashton EC, Hogarth PJ, Ormond R (1999) Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiologia 413:77–88CrossRefGoogle Scholar
  3. Bale AJ, Kenny AJ (2005) Sediment analysis and seabed characterization. In: Eleftheriou A, McIntyre A (eds) Methods for the study of Marine Benthos, 3rd edn. Blackwell, OxfordGoogle Scholar
  4. Bradford MA, Tordoff GM, Eggers T et al (2002) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–323CrossRefGoogle Scholar
  5. Cannicci S, Burrows D, Fratini S et al (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forest: a review. Aquat Bot 89:186–200CrossRefGoogle Scholar
  6. Chen L, Zan Q, Li M et al (2009) Litter dynamics and forest structure of introduced Sonneratia caseolaris mangrove forest in Shenzhen, China. Est Coast Shelf Sci 85:241–246CrossRefGoogle Scholar
  7. Cintrón G, Schaeffer-Novelli Y (1984) Methods for studying mangrove structure. In: Snedaker SC, Snedaker JG (eds) The mangrove ecosystem: research methods, vol 8. Monographs on oceanographic methodology UNESCO, Paris, pp 91–113Google Scholar
  8. Cintron-Molero G, Schaeffer-Novelli Y (1992) Ecology and management of New World mangroves. In: Seelinger U (ed) Coastal plant communities of Latin America. Academic Press, California, pp 233–258Google Scholar
  9. Conde JE, Díaz H (1985) Diseño de muestreo aleatório estratificado aplicado al estudio de poblaciones del género Uca (Brachyura: Ocypodidae). Invest Pesq 49(4):567–579Google Scholar
  10. Davis JH (1940) The ecology and geologic role of mangroves in Florida. Papers of the Tortugas Laboratory no. 32, pp 303–412Google Scholar
  11. Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115:39–53CrossRefGoogle Scholar
  12. Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, SunderlandGoogle Scholar
  13. Gray JS (1974) Animal-sediment relationships. Oceanogr Mar Biol Annu Rev 12:223–261Google Scholar
  14. Green RH (1979) Sampling design and statistical methods for environmental biologists. Wiley, New YorkGoogle Scholar
  15. Gribsholt B, Kostka JE, Kristensen E (2003) Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia salt marsh. Mar Ecol Prog Ser 259:237–251CrossRefGoogle Scholar
  16. Johnstone MI (1981) Consumption of leaves by herbivores in mixed mangrove stands. Biotropica 13(4):252–259CrossRefGoogle Scholar
  17. Jones DA (1984) Crabs of the mangal ecosystem. In: Por DF, Dor I (eds) Hydrobiology of the Mangal. W. Junk Publishers, Boston, pp 89–109Google Scholar
  18. Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30–43CrossRefGoogle Scholar
  19. Lee SY (1999) The effect of mangrove leaf litter enrichment on macrobenthic colonization of defaunated sandy substrates. Est Coast Shelf Sci 49:703–712CrossRefGoogle Scholar
  20. Macintosh DJ (1988) The ecology and physiology of decapods of mangrove swamps. Symp Zool Soc Lond 59:315–341Google Scholar
  21. Macintosh DJ, Ashton EC, Havanon S (2002) Mangrove rehabilitation and intertidal biodiversity: a study in the Ranong mangrove ecosystem, Thailand. Est Coast Shelf Sci 55:331–345CrossRefGoogle Scholar
  22. Martin L, Suguio K (1976) Brazilian coastline quaternary formations—the states of São Paulo and Bahia littoral zone evolutive schemes. An Acad Bras Cienc 48:325–334Google Scholar
  23. Mazda Y, Wolanski E, Ridd PV (2007) The role of physical process in mangrove environments: manual for the preservation and utilization of mangrove ecosystems. Terrapub, TokyoGoogle Scholar
  24. Melo GAS (1996) Manual de Identificação dos Brachyura (Caranguejos e Siris) do Litoral Brasileiro. Plêiade, São PauloGoogle Scholar
  25. Menghini RP (2008) Dinâmica da recomposição natural em bosques de mangue impactados: Ilha Barnabé (Baixada Santista) SP, Brasil. Doctoral thesis, São Paulo, SP, Universidade de São PauloGoogle Scholar
  26. Micheli F (1993) Effect of mangrove litter species and availability on survival, molting, and reproduction of the mangrove crab Sesarma messa. J Exp Mar Biol Ecol 171:149–163CrossRefGoogle Scholar
  27. Nagelkerken I, Blaber SJM, Bouillon S et al (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aqua Bot 89:155–185CrossRefGoogle Scholar
  28. Ng PKL, Guinot D, Davie PJF (2008) Systema Brachyurorum: part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bull Zool 17:1–286Google Scholar
  29. Nordhaus I, Wolff M, Diele K (2006) Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Est Coast Shelf Sci 67:239–250CrossRefGoogle Scholar
  30. Pompêo MLM (1996) Ecologia de Echinochloa polystachya (H.B.K.) Hitchcock na represa de Jurumirim (zona de desembocadura do rio Paranapanema, SP). Doctoral thesis, São Carlos, SP, Universidade de São PauloGoogle Scholar
  31. Por FD, Dor I (1984) Hydrobiology of the mangal: the ecosystem of the mangrove forest. Dr. W. Junk, The Hague, p 260Google Scholar
  32. Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman & Hall, LondonCrossRefGoogle Scholar
  33. Robertson AI (1991) Plant-animal interactions and the structure and function of mangrove forest ecosystems. Aust J Ecol 16:433–443CrossRefGoogle Scholar
  34. Robertson AI, Daniel PA (1989) The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191–198CrossRefGoogle Scholar
  35. Rodríguez G (1987) Structure and production in Neotropical mangroves. Tree 2(9):264–267PubMedGoogle Scholar
  36. Rossi M, Mattos IFA (2002) Solos de mangue do Estado de São Paulo: caracterização química e física. Revista do Departamento de Geografia 15:101–113Google Scholar
  37. Schaeffer-Novelli Y, Cintrón G (1990) Status of mangrove research in Latin America and the Caribbean. Bolm Inst Oceanogr 38:93–97CrossRefGoogle Scholar
  38. Schaeffer-Novelli Y, Cintron-Morelo G, Adaime RR, Camargo M (1990) Variability of mangrove ecosystem along the Brazilian Coast. Estuaries 13:204–218CrossRefGoogle Scholar
  39. Schubart CD, Cuesta JA, Felder DL (2002) Glyptograpsidae, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsoidea. J Crust Biol 22:28–44CrossRefGoogle Scholar
  40. Semeniuk V (1980) Mangrove zonation along an eroding coast line in King Sound North-Wester Australia. J Ecol 68:789–812CrossRefGoogle Scholar
  41. Silva CAR, Lacerda LD, Silva LFF et al (1991) Forest structure and biomass distribution in a red mangrove stand in Sepetiba Bay, Rio de Janeiro. Rev Bras Bot 14:21–25Google Scholar
  42. Snelgrove PVR, Butman CA (1994) Animal-sediment relationships revisited: cause versus effect. Oceanogr Mar Biol Annu Rev 32:111–177Google Scholar
  43. Twilley RR (1985) The exchange of organic carbon in basin mangrove forest in a southwest Florida estuary. Est Coast Shelf Sci 20:543–557CrossRefGoogle Scholar
  44. Twilley RR, Snedaker SC, Yañez-Arancibia A et al (1995) Mangrove systems. In: Heywood VH (ed) Global biodiversity assessment, vol 6.1.11. Ecosystem analyses biodiversity and ecosystem function. Cambridge University Press, Cambridge, pp 387–393Google Scholar
  45. Twilley RR, Pozo M, Garcia VH et al (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–122CrossRefGoogle Scholar
  46. Villwock JA, Lessa GC, Suguio K, Angulo RJ, Dillenburg SR (2005) Geologia e geomorfologia de regiões costeiras. In: Souza CRG, Suguio K, Oliveira MAS, Oliveira PE (eds) Quaternário do Brasil. Holos Editora, Ribeirão Preto, São PauloGoogle Scholar
  47. Wafar S, Untawale AG, Wafar M (1997) Litter fall and energy flux in a mangrove ecosystem. Est Coast Shelf Sci 44:111–124CrossRefGoogle Scholar
  48. Watling L (1988) Small-scale features of marine sediments and their importance to the study of deposit-feeding. Mar Ecol Prog Ser 47:135–144CrossRefGoogle Scholar
  49. Wentworth CK (1922) A scale of grade and class terms of clastic sediments. J Geol 30:377–392CrossRefGoogle Scholar
  50. Werry J, Lee SY (2005) Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains. Mar Ecol Prog Ser 293:165–176CrossRefGoogle Scholar
  51. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Karine Delevati Colpo
    • 1
  • Mônica Mungai Chacur
    • 2
  • Fernanda Jordão Guimarães
    • 3
  • Maria Lúcia Negreiros-Fransozo
    • 4
  1. 1.Universidade Estadual Paulista, Campus Experimental do Litoral Paulista—UNESPSão VicenteBrazil
  2. 2.Universidade Estadual de Mato Grosso do Sul—PB 351—UEMSDouradosBrazil
  3. 3.Universidade Estadual de Santa Cruz—UESC, DCB/Sistemas Aquáticos Tropicais Rodovia Ilhéus/ItabunaIlhéusBrazil
  4. 4.Universidade Estadual Paulista, Departamento de Zoologia, IBB—UNESPBotucatuBrazil

Personalised recommendations