Skip to main content
Log in

Indicators for biodiversity and ecosystem services: towards an improved framework for ecosystems assessment

  • Original paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Ecosystem assessment and monitoring requires the development and application of suitable indicators, i.e. they need to be (i) reliable and capable of simplifying complex relationships, (ii) quantifiable and transparent in order to enable an easy communication, and (iii) fit for the purpose of indication. These requirements are scarcely fulfilled in current ecosystem assessment and monitoring efforts to address the requirements of international biodiversity conventions. Here we present and test a set of seven criteria towards an improved framework for ecosystems indication with particular emphasis on the indication of biodiversity and ecosystem services: purpose of indication, indicator type according to the EEA’s Driver-Pressure-State-Impact-Response scheme, direct/indirect linkages to biodiversity and ecosystem services, spatial scale and scalability across scales, applicability of benchmarks/reference values, availability of data and protocols, and applicability of remote sensing. The criteria are tested using 24 indicators of ecosystem assessment and monitoring at the global, continental and regional scale. Based on the general trends revealed by our evaluation, we present recommendations to streamline and improve ecosystem indication with respect to international biodiversity conventions. The implementation of our recommendations does require concerted international effort, comparable, for instance, to the implementation of the Water Framework Directive in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ares J, Bertiller M, del Valle H (2001) Functional and structural landscape indicators of intensification; resilience and resistance in agroecosystems in southern Argentina based on remotely sensed data. Landscape Ecol 16:221–234

    Article  Google Scholar 

  • Bady P, Dolédec S, Fesl C et al (2005) Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshw Biol 50:159–173

    Article  Google Scholar 

  • Bailey D, Herzog F, Augenstein I et al (2007) Thematic resolution matters: Indicators of landscape pattern for European agro-ecosystems. Ecol Ind 7:692–709

    Article  Google Scholar 

  • Baird DJ, Rubach MN, van den Brink PJ (2008) Trait-Based Ecological Risk Assessment (TERA): The New Frontier? Integr Environ Assess Manag 4:2–3

  • Balmford A, Crane P, Dobson A et al (2005) The 2010 challenge: data availability, information needs and extraterrestrial insights. Phil Trans R Soc B 360:221–228

    Article  PubMed  Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423

    Article  Google Scholar 

  • Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  • Birk S, Korte T, Hering D (2006) Intercalibration of assessment methods for macrophytes in lowland streams: direct comparison and analysis of common metrics. Hydrobiologia 566:417–430

    Article  Google Scholar 

  • Boer M, Puigdefabregas J (2003) Predicting potential vegetation index values as a reference for the assessment and monitoring of dryland condition. Int J Remote Sens 24:1135–1141

    Article  Google Scholar 

  • Breure AM, Mulder CM, Römbke J et al (2005) Ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Saf 62:211–229

    Article  CAS  PubMed  Google Scholar 

  • Büchs W (2003) Biodiversity and agri-environmental indicators—general scopes and skills with special reference to the habitat level. Agric Ecosyst Environ 98:35–78

    Article  Google Scholar 

  • Buyantuyev A, Wu J (2007) Effects of thematic resolution on landscape pattern analysis. Landsc Ecol 22:7–13

    Article  Google Scholar 

  • Comin FA, Menéndez M, Herrera JA (2004) Spatial and temporal scales for monitoring coastal aquatic ecosystems. Aquat Conserv 14:S5–S17

    Article  Google Scholar 

  • Dale VH, Bayeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Ind 1:3–10

    Article  Google Scholar 

  • Davis WS, Simon TP (eds) (1995) Biological assessment and criteria. Tools for water resource planning and decision making. Lewis Publishers, Boca Raton, pp 1–415

    Google Scholar 

  • Dawson TP, North PRJ, Plummer SE et al (2003) Forest ecosystem chlorophyll content: Implications for remotely sensed estimates of net primary productivity. Int J Remote Sens 24:611–618

    Article  Google Scholar 

  • de Bello F, Leps J, Sebastià M-T (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29:801–810

    Article  Google Scholar 

  • de Bello F, Lavorel S, Diaz S et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv. doi:10.1007/s10531-010-9850-9

  • Diaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Diaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLOS Biol 4:1300–1305

    Article  CAS  Google Scholar 

  • Díaz S, Lavorel S, de Bello F et al (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20489–20684

    Article  Google Scholar 

  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327, Brussels

  • Dolédec S, Statzner B (2008) Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshw Biol 53:617–634

    Article  Google Scholar 

  • Dormann CF, Schweiger O, Augenstein I et al (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Global Ecol Biogeogr 16:774–787

    Article  Google Scholar 

  • Dudley N, Baldock D, Nasi R et al (2005) Measuring biodiversity and sustainable management in forests and agricultural landscapes. Philos Trans R Soc B 360:457–470

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • Duro DC, Coops NC, Wulder MA et al (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Prog Phys Geogr 31:235–260

    Article  Google Scholar 

  • EEA (European Environment Agency) (2006) The thematic accuracy of Corine land cover 2000—assessment using LUCAS. EEA Technical Report 7/2006. Copenhagen, pp 1–85

  • EEA (European Environment Agency) (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. EEA Technical Report 11/2007. Office for Official Publications of the European Communities. Luxembourg, pp 1–38

  • EEA (European Environment Agency) (2009) Progress towards the European 2010 biodiversity target. EEA Report 4/2009. Copenhagen, pp 1–52

  • Failing L, Gregory R (2003) Ten common mistakes in designing biodiversity indicators for forest policy. J Environ Manage 68:121–132

    PubMed  Google Scholar 

  • Feld CK, Hering D (2007) Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw Biol 52:1380–1399

    Article  Google Scholar 

  • Feld CK, de Bello F, Bugter R, et al (2008) Assessing and monitoring ecosystems—indicators, concepts and their linkage to biodiversity and ecosystem services. Deliverable 4.1 of the RUBICODE project (project No GOCE-CT-2006-036890), pp 1–109. http://www.rubicode.net/rubicode/RUBICODE_Review_on_Indicators.pdf. Cited 29 June 2009

  • Feld CK, Martins da Silva P, Sousa JP et al (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862–1871

    Article  Google Scholar 

  • Furse MT, Hering D, Moog O et al (2006) The STAR project: context, objectives and approaches. Hydrobiologia 566:3–29

    Article  Google Scholar 

  • Gobin A, Jones R, Kirkby M et al (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Pol 7:25–38

    Article  Google Scholar 

  • Harris A, Bryant RG (2009) A multi-scale remote sensing approach for monitoring northern peatland hydrology: present possibilities and future challenges. J Env Manage 90:2178–2188

    Article  Google Scholar 

  • Harrison PA, Vandewalle M, Sykes MT, et al (2010) Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodivers Conserv. doi:10.1007/s10531-010-9789-x

  • Heemsbergen DA, Berg MP, Loreau M et al (2004) Biodiversity effects on soil, processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Hendrickx F, Maelfait J-P, van Wingerden W et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Hering D, Buffagni A, Moog O et al (2003) The development of a system to assess the ecological quality of streams based on macroinvertebrates—design of the sampling programme within the AQEM project. Int Rev Hydrobiol 88:345–361

    Article  Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Ingram JC, Dawson TP (2005) Inter-annual analysis of deforestation hotspots in Madagascar from high temporal resolution satellite observations. Int J Remote Sens 26:1447–1461

    Article  Google Scholar 

  • Jha CS, Goparaju L, Tripathi A et al (2005) Forest fragmentation and its impact on species diversity: an analysis using remote sensing and GIS. Biodivers Conserv 14:1681–1698

    Article  Google Scholar 

  • Johnson RK, Furse MT, Hering D et al (2007) Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshw Biol 52:939–958

    Article  Google Scholar 

  • Jones CG, Lawton JH (1995) Linking species and ecosystems. Chapman & Hall, New York, p 387

    Google Scholar 

  • Juutinen A, Monkkonen M (2004) Testing alternative indicators for biodiversity conservation in old-growth boreal forests: ecology and economics. Ecol Econ 50:35–48

    Article  Google Scholar 

  • Kail J, Hering D (2009) The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Res Appl 25:537–550

    Article  Google Scholar 

  • Kolkwitz R, Marsson M (1902) Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna (Basis of the biological assessment of water according to flora and fauna). Mitteil Königl Prüfungsanst Wasserversorgung Abwasserbeseitigung Berlin 1:33–72

    Google Scholar 

  • Kolkwitz R, Marsson M (1908) Ökologie der pflanzlichen Saprobien (Ecology of plant saprobics). Ber Deutsch Bot Ges 26A:505–519

    Google Scholar 

  • Lara A, Little C, Urrutia R et al (2009) Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. For Ecol Manage 258:415–424

    Article  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M et al (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15

    Article  Google Scholar 

  • Lengyel S, Déri E, Varga Z et al (2008) Habitat monitoring in Europe: a description of current practices. Biodivers Conserv 17:3327–3339

    Article  Google Scholar 

  • Loh J, Green RE, Ricketts T et al (2005) The Living Planet Index: using species population time series to track trends in biodiversity. Phil Trans R Soc B 360:289–295

    Article  PubMed  Google Scholar 

  • Lomolino MV (2001) The species-area relationship: new challenges for an old pattern. Prog Phys Geogr 25:1–21

    Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Luck GW, Harrington R, Harrison PA et al (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223–235

    Article  Google Scholar 

  • MA (Millennium Ecosystem Assessment) (2005a) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, pp 1–137

    Google Scholar 

  • MA (Millennium Ecosystem Assessment) (2005b) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC, pp 1–86

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • McGeoch M (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201

    Article  Google Scholar 

  • Moretti M, de Bello F, Roberts SPM et al (2008) Taxonomical versus functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108

    Article  PubMed  Google Scholar 

  • Mulder C, Schouten AJ, Hund-Rinke K et al (2005) The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:278–289

    Article  CAS  PubMed  Google Scholar 

  • Mumby PJ, Skirving W, Strong AE et al (2004) Remote sensing of coral reefs and their physical environment. Mar Poll Bull 48:219–228

    Article  CAS  Google Scholar 

  • Myneni RB, Hall FG, Sellers PJ et al (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33:481–486

    Article  Google Scholar 

  • Nagendra H (2001) Review article. Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400

    Article  Google Scholar 

  • Nagendra H, Rocchini D (2008) High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail. Biodivers Conserv 17:3431–3442

    Article  Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Evol Syst 35:89–111

    Article  Google Scholar 

  • Nijboer RC, Johnson RK, Verdonschot PFM (2004) Establishing reference conditions for European streams. Hydrobiologia 516:91–105

    Article  Google Scholar 

  • Nortcliff S (2002) Standardisation of soil quality attributes. Agric Ecosyst Environ 88:161–168

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manage 10:381–402

    Article  Google Scholar 

  • Parisi V, Menta C, Gardi C et al (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Env 105:323–333

    Article  Google Scholar 

  • Pauly D, Watson R (2005) Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity. Phil Trans R Soc B 360:415–423

    Article  PubMed  Google Scholar 

  • Pearman PB, Penskar MR, Schools EH et al (2006) Identifying potential indicators of conservation value using natural heritage occurrence data. Ecol Appl 16:186–201

    Article  PubMed  Google Scholar 

  • Rainio J, Niemela J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506

    Article  Google Scholar 

  • Revenga C, Brunner J, Henninger N et al (2000) Pilot analysis of global ecosystems: freshwater systems. World Resources Institute, Washington, DC

    Google Scholar 

  • Reynoldson TB, Norris RH, Resh VH et al (1997) The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J N Am Benthol Soc 16:833–852

    Article  Google Scholar 

  • Riitters KH, Coulston JW, Wickham JD (2003) Localizing national fragmentation statistics with forest type maps. J For 101:18–22

    Google Scholar 

  • Rodrigues ASL, Pilgrim JD, Lamoreux JF et al (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76

    Article  PubMed  Google Scholar 

  • Römbke J, Jansch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265

    Article  PubMed  Google Scholar 

  • Römbke J, Sousa JP, Schouten T et al (2006) Monitoring of soil organisms: a set of standardised field methods proposed by ISO. Eur J Soil Biol 42:61–64

    Article  Google Scholar 

  • Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162

    Article  Google Scholar 

  • Rounsevell MDA, Dawson TP, Harrison PA (2010) A conceptual framework to assess the effects of environmental change on ecosystem services. Biodivers Conserv. doi:10.1007/s10531-010-9838-5

  • Sanchez-Fernandez D, Abellan P, Mellado A et al (2006) Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE spain). Biodivers Conserv 15:4507–4520

    Article  Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856

    Google Scholar 

  • Scholes RJ, Biggs R (2005) A biodiversity intactness index. Nature 434:45–49

    Article  CAS  PubMed  Google Scholar 

  • Shahin A, Mahbod MA (2007) Prioritization of key performance indicators: an integration of analytical hierarchy process and goal setting. Int J Prod Perform Manage 56:226–240

    Article  Google Scholar 

  • Silvestri S, Marania M, Maranib A (2003) Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography. Physics Chem Earth, Parts A/B/C 28:15–25

    Article  Google Scholar 

  • Sousa JP, Bolger T, da Gama MM et al (2006) Changes in Collembola richness and diversity along a gradient of land-use intensity: a pan European study. Pedobiologia 50:147–156

    Article  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294

    Google Scholar 

  • Stoddard JL, Larsen DP, Hawkins CP et al (2006) Setting expectations for the ecological condition of streams: the concept of reference conditions. Ecol Appl 16:1267–1276

    Article  PubMed  Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Turner W, Spector S, Gardiner N et al (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314

    Article  Google Scholar 

  • UNEP/CBD/COP7 (2003) Implementation of the strategical plan: evaluation of progress towards the 2010 biodiversity target: development of specific targets, indicators and a reporting framework. In: Seventh meeting of the subsidiary body on scientific, technical and technological advice to the convention on biological diversity, Kuala Lumpur, pp 1–22

  • Verberk WEP, Siepel H, Esselink H (2008a) Applying life-history strategies for freshwater macroinvertebrates to lentic waters. Freshw Biol 53:1739–1753

    Article  Google Scholar 

  • Verberk WEP, Siepel H, Esselink H (2008b) Life-history strategies in freshwater macroinvertebrates. Freshw Biol 53:1722–1738

    Article  Google Scholar 

  • Walker B (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

  • Walker B (1995) Conserving biological diversity through ecosystem resilience. Conserv Biol 9:747–752

    Article  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    Article  CAS  PubMed  Google Scholar 

  • Wright JF, Furse MT, Armitage PD (1993) RIVPACS—a technique for evaluating the biological quality of rivers in the U.K. Eur Water Poll Control 3:15–25

    Google Scholar 

  • Yang J, Prince SD (2000) Remote sensing of savanna vegetation changes in Eastern Zambia 1972–1989. Int J Remote Sens 21:301–322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Paula Harrison, University of Oxford, and three anonymous reviewers helped significantly to improve an earlier version of the manuscript. This work was supported by the RUBICODE Coordination Action Project (Rationalising Biodiversity Conservation in Dynamic Ecosystems) funded under the Sixth Framework Programme of the European Commission (Contract No. 036890). RUBICODE is endorsed by the Global Land Project of the IGBP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Feld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feld, C.K., Sousa, J.P., da Silva, P.M. et al. Indicators for biodiversity and ecosystem services: towards an improved framework for ecosystems assessment. Biodivers Conserv 19, 2895–2919 (2010). https://doi.org/10.1007/s10531-010-9875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9875-0

Keywords

Navigation