Biodiversity and Conservation

, Volume 19, Issue 9, pp 2565–2595 | Cite as

Ground spider assemblages as indicators for habitat structure in inland sand ecosystems

  • Sascha Buchholz
Original Paper


Open inland sand ecosystems harbour a specialised flora and fauna and are among the most endangered habitats in Central Europe. Land-use changes and lack of habitat dynamics are acknowledged as significant drivers for habitat loss and degradation. It is imperative for nature conservation to obtain criteria such as community structure and biodiversity of model groups to assess the conservation value of threatened habitats. By investigating the correlation between ground spider assemblages and habitat structure, the study aimed to find out the indicator potential of spiders in order to promote conservation objectives and management strategies for open inland sand ecosystems. Non-metric multidimensional scaling revealed four habitat groups with distinct spider assemblages that clearly reflected the whole variety of habitat structure types within the study area. Species distribution was constrained by biotic and abiotic gradients while the ecological traits of spiders differed significantly among the groups. Generalised linear models showed that abundances of particular species were significantly correlated with environmental factors and habitat structure, making them thus suitable as focal species to assess natural habitat modifications as well as success of management efforts. Based on these findings, we derived major aims for successful habitat management of inland sand ecosystems taking into account also the needs of arthropod conservation. Management should include both small and large reserves when aiming for higher levels of disturbance, and sand dynamics to prevent increasing scrub encroachment and to create a larger number of early succession stages.


Araneae Conservation Disturbance Dry grasslands Environmental factors Heathlands Habitat management 



I would like to thank the district administration (Untere Landschaftsbehörde) of Borken, Coesfeld, Gütersloh, Paderborn, Recklinghausen, Steinfurt and Warendorf for enabling field work. I also wish to express my gratitude to A. Beulting, K. Hannig, K. Mantel, M. Olthoff, N. Ribbrock, H. Terlutter and C. Venne for information on study areas and M. Breuer for assistance during field work. Furthermore, I am thankful to S. Hsieh, J. Schirmel and two anonymous reviewers for valuable comments on the manuscript and to R. Baumgartner for linguistic revision of the text. My work was funded by a scholarship of the Friedrich-Ebert-Foundation (Friedrich-Ebert-Stiftung, FES).


  1. AG Boden/Arbeitsgruppe Boden der Geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der Bundesrepublik Deutschland (1994) Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften, HannoverGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csari F (eds) International symposium on information theory, 2nd edn. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  3. Báldi A (2008) Habitat heterogeneity overrides the species-area relationship. J Biogeogr 35:675–681. doi: 10.1111/j.1365-2699.2007.01825.x CrossRefGoogle Scholar
  4. Balzer S, Ssymank A (2005) Natura 2000 in Deutschland. Naturschutz und biologische Vielfalt 14: CD RomGoogle Scholar
  5. Beals ML (2006) Understanding community structure: a data-driven multivariate approach. Oecologia 150:484–495CrossRefPubMedGoogle Scholar
  6. Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387. doi: 10.1017/S0952836901001479 CrossRefGoogle Scholar
  7. Bellmann H (1997) Zum Vorkommen dünenspezifischer Arthropoden in Mitteleuropa. Mitt dtsch Ges allg angew Ent 11:839–842Google Scholar
  8. Blaum N, Seymour C, Rossmanith E, Schwager M, Jeltsch F (2009) Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers Conserv 18:1187–1199. doi: 10.1007/s10531-008-9498-x CrossRefGoogle Scholar
  9. Bonte D, Criel P, van Thournout I, Maelfait J-P (2003) Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J Biogeogr 30:901–911. doi: 10.1046/j.1365-2699.2003.00885.x CrossRefGoogle Scholar
  10. Bonte D, Criel P, Vanhoutte L, van Thournout I, Maelfait J-P (2004) The importance of habitat productivity, stability and heterogeneity for spider species richness in coastal grey dunes along the North Sea and it implications for conservation. Biodivers Conserv 13:2119–2134. doi: 10.1023/B:BIOC.0000040004.63826.fb CrossRefGoogle Scholar
  11. Bonte D, Lens L, Maelfait J-P (2006) Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J Appl Ecol 43:735–747. doi: 10.1111/j.1365-2664.2006.01175.x CrossRefGoogle Scholar
  12. Buchholz S (2008) Spider assemblages in an inland dune complex of Northwest Germany. Drosera 2008:63–76Google Scholar
  13. Buchholz S, Hartmann V (2008) Spider fauna of semi-dry grasslands on a military training base in Northwest Germany (Münster). Arachnol Mitt 35:51–60Google Scholar
  14. Buddle CM, Spence JR, Langor DW (2000) Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23:424–436. doi: 10.1111/j.1600-0587.2000.tb00299.x CrossRefGoogle Scholar
  15. Burrichter E (1973) Die potentielle natürliche Vegetation in der Westfälischen Bucht - Erläuterungen zur Übersichtskarte 1:200.000. Siedlung Landschaft Westfalen 8:1–62Google Scholar
  16. Cattin MF, Blandenier G, Banasek-Richter C, Bersier LF (2003) The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol Conserv 113:179–188CrossRefGoogle Scholar
  17. Chao A, Shen TJ (2003) Program SPADE (Species Prediction And Diversity Estimation). Program and user’s guide published at Accessed 01 July 2008
  18. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  19. Collins JA, Jennings DT, Forsythe HY (1996) Effects of cultural practices on the spider (Araneae) fauna of lowbush blueberry fields in Washington county, Maine. J Arachnol 24:43–57Google Scholar
  20. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  21. Dennis P, Young MR, Bentley C (2001) The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric Ecosyst Environ 86:39–57. doi: 10.1016/S0167-8809(00)00263-2 CrossRefGoogle Scholar
  22. Dinter W (1999) Naturräumliche Gliederung. In: Landesanstalt für Ökologie, Bodenordnung und Forsten NRW (ed.) Rote Liste der gefährdeten Pflanzen und Tiere in Nordrhein-Westfalen, 3. Fassung. LÖBF-Schriftenr 17:29–36Google Scholar
  23. Dobson AJ (2002) Introduction to generalized linear models, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  24. Downie IS, Coulson JC, Butterfield JEL (1996) Distribution and dynamics of surface-dwelling spiders across a pasture-plantation ecotone. Ecography 19:29–40. doi: 10.1111/j.1600-0587.1996.tb00152.x CrossRefGoogle Scholar
  25. Drachenfels Ov (1996) Rote Liste der gefährdeten Biotoptypen in Niedersachsen–Bestandsentwicklung und Gefährdungsursachen der Biotop- und Ökosystemtypen sowie ihrer Komplexe—Stand Januar 1996. Naturschutz Landschaftspflege in Niedersachsen 34:1–148Google Scholar
  26. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 Google Scholar
  27. Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036. doi: 10.1111/j.1523-1739.2005.00078.x CrossRefGoogle Scholar
  28. Engelmann HD (1978) Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 18:378–380Google Scholar
  29. Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448. doi: 10.1111/j.1466-8238.2006.00305.x CrossRefGoogle Scholar
  30. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68. doi: 10.1007/BF00038687 CrossRefGoogle Scholar
  31. Fasham MJR (1977) A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines and coenoplanes. Ecology 58:551–561CrossRefGoogle Scholar
  32. Finch OD (1997) Die Spinnen (Araneae) der Trockenrasen eines nordwestdeutschen Binnendünenkomplexes. Drosera 1997:21–40Google Scholar
  33. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. doi: 10.1111/j.1466-8238.2007.00287.x CrossRefGoogle Scholar
  34. Foord SH, Mafadza MM, Dippenaar-Schoeman AS, Van Rensburg BJ (2008) Micro-scale heterogeneity of spiders (Arachnida: Araneae) in the Soutpansberg, South Africa: a comparative survey and inventory in representative habitats. Afr Zool 43:156–174. doi: 10.3377/1562-7020-43.2.156 CrossRefGoogle Scholar
  35. Gerland K (2004) Empfehlungen zur Heidepflege durch Feuer, abgeleitet aus Untersuchungen zur Besiedlung von Brandflächen durch Spinnen. Diploma thesis, University of Applied Science Lippe and HöxterGoogle Scholar
  36. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  37. Grill A, Knoflach B, Cleary DFR, Kati V (2005) Butterfly, spider, and plant communities in different land-use types in Sardinia, Italy. Biodivers Conserv 14:1281–1300. doi: 10.1007/s10531-004-1661-4 CrossRefGoogle Scholar
  38. Harris R, York A, Beattie AJ (2003) Impacts of grazing and burning on spider assemblages in dry eucalypt forests of north-eastern New South Wales, Australia. Aust Ecol 28:526–538. doi: 10.1046/j.1442-9993.2003.01310.x CrossRefGoogle Scholar
  39. Heimer S, Nentwig W (1991) Spinnen Mitteleuropas. Parey, BerlinGoogle Scholar
  40. Heublein D (1982) Untersuchungen zum Einfluss eines Waldrandes auf die epigäische Spinnenfauna eines angrenzenden Halbtrockenrasens. Laufener Seminar-Beitr 5:79–94Google Scholar
  41. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Sysmstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosytem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi: 10.1890/04-0922 CrossRefGoogle Scholar
  42. Horvath R, Magura T, Szinetar C, Tothmeresz (2009) Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric Ecosyst Environ 130:16–22. doi: 10.1016/j.agee.2008.11.011 CrossRefGoogle Scholar
  43. Hsieh Y-L, Lin Y-S, Tso I-M (2003) Ground spider diversity in the Kenting uplifted coral reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodivers Conserv 12:2173–2194. doi: 10.1023/A:1024591311548 CrossRefGoogle Scholar
  44. Huber C, Schulze C, Baumgarten M (2007) The effect of femel- and small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany. Biodivers Conserv 16:3653–3680. doi: 10.1007/978-1-4020-6865-2_28 CrossRefGoogle Scholar
  45. Hüppe J (1993) Entwicklung der Tieflands-Heidegesellschaften Mitteleuropas in geobotanisch-vegetationsgeschichtlicher Sicht. Ber d Reinh-Tüxen Ges 5:49–75Google Scholar
  46. Irmler U, Paustian D, Rief S, Sioli E, Simon J, Voigt N (1994) Entwicklung von Tiergemeinschaften infolge von Pflegemaßnahmen in Trockenheide-Naturschutzgebieten. Faun-ökol Mitt Suppl 16:83–121Google Scholar
  47. Jackson DA (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience 2:297–303Google Scholar
  48. Jentsch A, Beyschlag W, Nezadal W, Steinlein T, Welß W (2002) Bodenstörung - treibende Kraft für die Vegetationsdynamik in Sandlebensräumen - Konsequenzen für Pflegemaßnahmen im Naturschutz. Naturschutz und Landschaftsplanung 34:37–44Google Scholar
  49. Juen A, Traugott M (2004) Spatial distribution of epigaeic predators in a small field in relation to season and surrounding crops. Agric Ecosyst Environ 103:613–620. doi: 10.1016/j.agee.2003.10.017 CrossRefGoogle Scholar
  50. Kahlenberg J (2004) Trockenstandorte auf Sand—Perspektiven für die Entwicklung auch kleinräumiger Strukturen. In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 77–81Google Scholar
  51. Kaiser T (2004) Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandstandorte in Nordwestdeutschland—Operationalisierung der Forschungsergebnisse für die naturschutzfachliche Planung. NNA-Ber 17:213–221Google Scholar
  52. Kalfhues H (2005) Pflege- und Entwicklungsplan für das Naturschutzgebiet “Holtwicker Wacholderheide” (Kreis Recklinghausen) unter besonderer Berücksichtigung der Vegetation sowie der Habitate von Heidelerche und Zauneidechse. Diploma thesis, University of MünsterGoogle Scholar
  53. Kratochwil A (2004) Sand-Ökosysteme im Binnenland: Dynamik, Restitution und Beweidungsmanagement—das Beispiel: Emsland. In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 13–21Google Scholar
  54. Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808CrossRefGoogle Scholar
  55. Lambeets K, Hendrickx F, Vanacker S, Van Looy K, Maelfait J-P, Bonte D (2007) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148. doi:  10.1000/s10531-007-9313-0, doi: 10.1007/s10531-007-9313-0 Google Scholar
  56. Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174. doi: 10.1111/j.1365-2656.2008.01443.x CrossRefPubMedGoogle Scholar
  57. Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637. doi: 10.1016/j.biocon.2008.11.015 CrossRefGoogle Scholar
  58. Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi: 10.1007/s00442-004-1497-3 CrossRefPubMedGoogle Scholar
  59. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  60. Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin, HeidelbergGoogle Scholar
  61. Maes D, Bonte D (2006) Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol Conserv 133:490–499CrossRefGoogle Scholar
  62. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  63. Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, LondonGoogle Scholar
  64. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach Google Scholar
  65. McKinney ML (1999) High rates of extinction and threat in poorly studied taxa. Conserv Biol 13:1273–1281. doi: 10.1046/j.1523-1739.1999.97393.x CrossRefGoogle Scholar
  66. Merkens S (2002) Epigeic spider communities in inland dunes in the lowlands of Northern Germany. In: Toft S, Scharff N (eds) Proceedings of the 19th European colloquium of arachnology, Aarhus University Press, Arhus, pp 215–222Google Scholar
  67. Merrett P (1976) Changes in the ground-living spider fauna after heathland fires in Dorset. Bull Br Arachnol Soc 3:214–221Google Scholar
  68. Meynen E, Schmithüsen J (eds) (1959) Handbuch der naturräumlichen Gliederung Deutschlands, 6. Lieferung. Veröffentlichungen der Bundesanstalt für Landeskunde und des Deutschen Instituts für Länderkunde, RemagenGoogle Scholar
  69. Moretti M (2002) Effects of winter fire on spiders. In: Toft S, Scharff N (eds) Proceedings of the 19th European colloquium of arachnology, Aarhus University Press, Arhus, pp 183–190Google Scholar
  70. Morris MG (2000) The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol Conserv 95:129–142. doi: 10.1016/S0006-3207(00)00028-8 CrossRefGoogle Scholar
  71. Muff P, Kropf C, Frick H, Nentwig W, Schmidt-Entling MH (2009) Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv Divers 2:36–44. doi: 10.1111/j.1752-4598.2008.00037.x CrossRefGoogle Scholar
  72. Murl NRW (Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes NRW) (ed) (1989) Klima-Atlas von Nordrhein-Westfalen. Self-published, DüsseldorfGoogle Scholar
  73. Myers N, Knoll AH (2001) The biotic crisis and the future of evolution. Proc Natl Acad Sci USA 98:5389–5392CrossRefPubMedGoogle Scholar
  74. Negro M, Isaia M, Palestrini C, Rolando A (2009) The impact of forest ski-pistes on diversity of ground-dwelling arthropods and small mammals in the Alps. Biodivers Conserv. doi: 10.1007/s10531-009-9608-4
  75. New TR (1999a) Entomology and nature conservation. Eur J Entomol 96:11–17Google Scholar
  76. New TR (1999b) Untangling the web: spiders and the challenges of invertebrate conservation. J Insect Conserv 3:251–256. doi: 10.1023/A:1009697104759 CrossRefGoogle Scholar
  77. Norris KC (1999) Quantifying change through time in spider assemblages: sampling methods, indices and sources of error. J Insect Conserv 3:309–325. doi: 10.1023/A:1009600813111 CrossRefGoogle Scholar
  78. Novacek MJ, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–5470CrossRefPubMedGoogle Scholar
  79. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MH, Wagner H (2008) The vegan Package Version 1.15-0. Accessed 10 December 2008
  80. Pardey A (2004) Dünen und Sandlandschaften in Nordrhein-Westfalen unter besonderer Berücksichtigung der Situation in Westfalen. In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 3–11Google Scholar
  81. Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178. doi: 10.1007/s004420100720 CrossRefGoogle Scholar
  82. Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98:169–181. doi: 10.1016/S0167-8809(03)00079-3 CrossRefGoogle Scholar
  83. Petillon J, Ysnel F, Canard A, Lefeuvre JC (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations. Biol Conserv 126:103–117. doi: 10.1016/j.biocon.2005.05.003 CrossRefGoogle Scholar
  84. Platnick NJ (2010) The world spider catalog, version 10.5. American museum of natural history. Accessed 01/04/2010
  85. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219. doi: 10.1038/35012221 CrossRefPubMedGoogle Scholar
  86. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Accessed 10 June 2009
  87. Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung 2006. Naturschutz und biologische Vielfalt 34:1–318Google Scholar
  88. Ripley B (2008) The VR package version 7.2-45. Accessed 10 December 2008
  89. Roberts MJ (1987) The spiders of Great Britain and Ireland, Volume 2: Linyphiidae and Checklist. Harley Books, EssexGoogle Scholar
  90. Roberts MJ (1998) Spinnen Gids. Tirion, BaarnGoogle Scholar
  91. Romero GQ, Vasconcellos-Neto J (2005) The effects of plant structure on the spatial and microspatial distribution of a bromeliad-living jumping spider (Salticidae). J Anim Ecol 74:12–21. doi: 10.1111/j.1365-2656.2004.00893.x CrossRefGoogle Scholar
  92. Sachs L, Hedderich J (2006) Angewandte Statistik. Springer, Berlin, HeidelbergGoogle Scholar
  93. Schmidt L, Melber A (2004) Einfluss des Habitatmanagements auf die Wirbellosenfauna in Sand- und Moorheiden Nordwestdeutschlands. NNA-Ber 17:145–164Google Scholar
  94. Schmidt MH, Rocker S, Hanafi J, Gigon A (2008) Rotational fallows as overwintering habitat for grassland arthropods: the case of spiders in fen meadows. Biodivers Conserv 17:3003–3012. doi: 10.1007/s10531-008-9412-6 CrossRefGoogle Scholar
  95. Schwabe A, Remy D, Assmann T, Kratochwil A, Mährlein A, Nobis M, Storm C, Zehm A, Schlemmer H, Seuss R, Bergmann S, Eichberg C, Menzel U, Persigehl M, Zimmermann K, Weinert M (2002) Inland sand ecosystems: dynamics and restitution as a consequence of the use of different grazing systems. In: Härdtle W (ed) Pasture Landscapes and Nature conservation. Springer, Berlin, Heidelberg, pp 239–252Google Scholar
  96. Scott AG, Oxford G, Selden PA (2006) Epigeic spiders as ecological indicators of conservation value for peat. Biol Conserv 127:420–428CrossRefGoogle Scholar
  97. Shen TJ, Chao A, Lin CF (2003) Predicting the number of new species in further taxonomic sampling. Ecology 84:798–804. doi: 10.1890/0012-9658(2003)084[0798:PTNONS]2.0.CO;2 CrossRefGoogle Scholar
  98. Spitzer K, Danks HV (2006) Insect biodiversity of boreal peat bogs. Annu Rev Entomol 51:137–161. doi: 10.1146/annurev.ento.51.110104.151036 CrossRefPubMedGoogle Scholar
  99. Steven M (2004) Anforderungen an den Naturschutz in Flugsandgebieten Westfalens aus Sicht des Naturschutzbundes (NABU). In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 83–91Google Scholar
  100. Sundermeier A (1998a) Methoden zur Ermittlung der Vegetationsdeckung. In: Traxler A (ed) Handbuch des vegetationsökologischen Monitorings. Teil A: Methoden. Umweltbundesamt, Wien, pp 102–122Google Scholar
  101. Sundermeier A (1998b) Methoden zur Analyse der Vegetationsstruktur. In: Traxler A (ed) Handbuch des vegetationsökologischen Monitorings. Teil A: Methoden. Umweltbundesamt, Wien, pp 123–158Google Scholar
  102. Verbücheln G, Jöbges M (2000) Verbreitung und aktueller Zustand der Heiden, Sandtrockenrasen und Borstgrasrasen in Nordrhein-Westfalens. NUA-Hefte 6:6–23Google Scholar
  103. Warui CM, Villet MR, Young TP, Jocque R (2005) Influence of grazing by large mammals on the spider community of a Kenyan savanna biome. J Arachnol 33:269–279CrossRefGoogle Scholar
  104. Webb NR, Hopkins PJ (1984) Invertebrate diversity on fragmented Calluna heathland. J Appl Ecol 21:921–933CrossRefGoogle Scholar
  105. Wheater CP, Cullen WR, Bell JR (2000) Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landscape Ecol 15:401–406. doi: 10.1023/A:1008171023039 CrossRefGoogle Scholar
  106. White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progess in botany 62. Springer, Heidelberg, pp 399–449Google Scholar
  107. Wiesbauer H, Mazzucco K (1997) Dünen in Niederösterreich. Ökologie und Kulturgeschichte eines bemerkenswerten Landschaftselement. Fachberichte NÖ Landschaftsfonds 6:1–90Google Scholar
  108. Wilmanns O (1997) Zur Geschichte der mitteleuropäischen Trockenrasen seit dem Spätglazial - Methoden, Tatsachen, Hypothesen. Phytocoenologia 27:213–233Google Scholar
  109. Wise DH (1993) Spiders in ecological webs. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  110. Woodcock BA, Pywell RF (2009) Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers Conserv 19:81–95. doi: 10.1007/s10531-009-9703-6 CrossRefGoogle Scholar
  111. Woodcock BA, Pywell R, Roy DB, Rose RJ, Bell D (2005) Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biol Conserv 125:192–202. doi: 10.1016/j.biocon.2005.03.017 CrossRefGoogle Scholar
  112. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany

Personalised recommendations