Biodiversity and Conservation

, Volume 19, Issue 7, pp 2025–2038 | Cite as

Across-species patterns of genetic variation in forest trees of Central Europe

  • Dušan Gömöry
  • Roman Longauer
  • Ladislav Paule
  • Diana Krajmerová
  • Jarmila Schmidtová
Original Paper


The study focuses on geographical patterns of genetic variation at allozyme loci common for four main tree species of Central Europe (Norway spruce, silver fir, common beech and sessile oak). Moving-window averaging of four indicators of allelic richness and diversity (proportion of polymorphic loci, mean number of alleles per locus, effective number of alleles and expected heterozygosity) with window size of 50 × 50 km was used to identify the patterns. Moreover, local genetic divergence was assessed using the G ST (Nei, Molecular population genetic and evolution, Amsterdam and Oxford, North-Holland, 1975) and D j (Gregorius and Roberds, Theor Appl Genet 71:826–834, 1986) statistics for common beech and silver fir, where raw genotype data were available. Spatial patterns of diversity and allelic richness were quite similar. Romanian Carpathians were identified as the most important hotspot of genetic diversity and evolutionary divergence in Central Europe. Implications for genetic conservation are briefly discussed.


Picea abies Abies alba Fagus sylvatica Quercus petraea Allelic richness Diversity Differentiation Conservation 



The authors are grateful to B. Comps, A. Zanetto, A. Kremer and J. Sabor for providing their raw data. The study was supported by the Slovak Research and Development Agency under the contract no. APVV-0441-07 and the Centre of Excellence “Adaptive Forest Ecosystems” funded by the Operational Programme Research and Development financed from the European Regional Development Fund.


  1. Bangert RK, Turek RJ, Martinsen GD et al (2005) Benefits of conservation of plant genetic diversity to arthropod diversity. Conserv Biol 19:379–390CrossRefGoogle Scholar
  2. Bangert RK, Lonsdorf EV, Wimp GM et al (2008) Genetic structure of a foundation species: scaling community phenotypes from the individual to the region. Heredity 100:121–131CrossRefPubMedGoogle Scholar
  3. Bekessy SA, Ennos RA, Burgman MA et al (2003) Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol Conserv 110:267–275CrossRefGoogle Scholar
  4. Bergmann F, Gregorius H-R (1993) Ecogeographical distribution and thermostability of isocitrate dehydrogenase (IDH) alloenzymes in European silver fir (Abies alba). Biochem Syst Ecol 21:597–605CrossRefGoogle Scholar
  5. Bock CE, Jones ZF, Bock JH (2007) Relationships between species richness, evenness, and abundance in a southwestern savanna. Ecology 88:1322–1327CrossRefPubMedGoogle Scholar
  6. Buchert GP, Rajora OP, Hood JV, Dancik BP (1997) Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conserv Biol 11:747–758CrossRefGoogle Scholar
  7. Carnaval AC, Hickerson MJ, Haddad CFB et al (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789CrossRefPubMedGoogle Scholar
  8. Comps B, Thiébaut B, Paule L et al (1990) Allozymic variability in beechwoods (Fagus sylvatica L.) over Central Europe—spatial differentiation among and within populations. Heredity 65:407–417CrossRefGoogle Scholar
  9. Comps B, Gömöry D, Letouzey J et al (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397PubMedGoogle Scholar
  10. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New YorkGoogle Scholar
  11. Crutsinger GM, Collins MD, Fordyce JA et al (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968CrossRefPubMedGoogle Scholar
  12. Diniz-Filho JA, Telles MPDC (2006) Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure. Genet Mol Biol 29:207–214CrossRefGoogle Scholar
  13. Eanes WF (1999) Analysis of selection on enzyme polymorphisms. Ann Rev Ecol Syst 30:301–326CrossRefGoogle Scholar
  14. Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363CrossRefPubMedGoogle Scholar
  15. Flegr J (2005) Evoluční biologie [Evolutionary biology]. Academia, PrahaGoogle Scholar
  16. Gailing O, Vornam B, Leinemann L, Finkeldey R (2009) Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model. Physiol Plant 137:509–519CrossRefPubMedGoogle Scholar
  17. Gapare WJ, Yanchuk AD, Aitken SN (2008) Optimal sampling strategies for capture of genetic diversity differ between core and peripheral populations of Picea sitchensis (Bong.) Carr. Conserv Genet 9:411–418CrossRefGoogle Scholar
  18. Geburek T, Turok J (2005) Conservation and sustainable management of forest genetic resources in Europe—an introduction. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen and IPGRI, Rome, pp 3–10Google Scholar
  19. Gillet EM, Gömöry D, Paule L (2005) Measuring genetic variation within and among populations at marker loci. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen and IPGRI, Rome, pp 237–274Google Scholar
  20. Gömöry D, Paule L, Brus R et al (1999) Genetic differentiation and phylogeny of beech on the Balkan Peninsula. J Evol Biol 12:746–754CrossRefGoogle Scholar
  21. Gömöry D, Paule L, Shvadchak IM et al (2003) Spatial patterns of the genetic differentiation in European beech (Fagus sylvatica L.) at allozyme loci in the Carpathians and the adjacent regions. Silvae Genet 52:78–83Google Scholar
  22. Gömöry D, Paule L, Vyšný J (2007) Patterns of allozyme variation in western-Eurasian beeches. Bot J Linn Soc 154:165–174CrossRefGoogle Scholar
  23. Gömöryová E (2004) Small-scale variation of microbial activities in a forest soil under a beech (Fagus sylvatica L.) stand. Pol J Ecol 52:311–321Google Scholar
  24. Gram WK, Sork VL (1999) Population density as a predictor of genetic variation for woody plant species. Conserv Biol 13:1079–1087CrossRefGoogle Scholar
  25. Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:148–156CrossRefPubMedGoogle Scholar
  26. Gregorius H-R, Roberds JH (1986) Measurement of genetic differentiation among subpopulations. Theor Appl Genet 71:826–834CrossRefGoogle Scholar
  27. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124Google Scholar
  28. Hattemer HH (1987) Are the EEC directives on forest reproductive material genetically adequate? Silvae Genet 36:94–102Google Scholar
  29. Hazler K, Comps B, Šugar I et al (1997) Genetic structure of Fagus sylvatica L. populations in Southeastern Europe. Silvae Genet 46:229–236Google Scholar
  30. Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636CrossRefGoogle Scholar
  31. Heuertz M, Hausman J-F, Hardy OJ et al (2004) Nuclear microsatellites reveal contrasting patterns of genetic structure between Western and Southeastern European populations of the common ash (Fraxinus excelsior L.). Evolution 58:976–988PubMedGoogle Scholar
  32. Hiraoka K, Tomaru N (2009) Population genetic structure of Fagus japonica revealed by nuclear microsatellite markers. Int J Plant Sci 170:748–758CrossRefGoogle Scholar
  33. Hlásny T (2007) Geografické informačné systémy. Priestorové analýzy [Geographic information systems. Spatial analyses]. Zephyros and Národné lesnícke centrum, ZvolenGoogle Scholar
  34. Holeksa J, Saniga M, Szwagrzyk J et al (2009) A giant tree stand in the West Carpathians—an exception or a relic of formerly widespread mountain European forests? For Ecol Manag 257:1577–1585CrossRefGoogle Scholar
  35. Iason GR, Lennon JJ, Pakeman RJ et al (2005) Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation? Ecol Lett 8:364–369CrossRefGoogle Scholar
  36. Isbell FI, Polley HW, Wilsey BJ (2009) Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12:443–451CrossRefPubMedGoogle Scholar
  37. Jedináková-Schmidtová J, Paule L, Magic D, Gömöry D (2004) Morphological and genetic differentiation among the Central European white oaks. For Genet 11:263–271Google Scholar
  38. Kempf M, Faber A, Sabor J (2007) Isoenzymatic and DNA polymorphism in progenies of spruce stands from some Krutzsch regions of IUFRO 1964/68 provenance test in Krynica. In: Proceedings of the IUFRO conference Norway spruce in the conservation of forest ecosystems in Europe, Warszawa, 3–5 Sept 2007Google Scholar
  39. Kohn MH, Murény WJ, Ostrander EA, Wayne RK (2007) Genomics and conservation genetics. Trends Ecol Evol 21:629–637CrossRefGoogle Scholar
  40. Krajmerová D, Longauer R (2000) Genetická diverzita smreka obyčajného Picea abies Karst. na Slovensku [Genetic diversity of Norway spruce Picea abies Karst. In Slovakia]. Lesn čas – For J 46:130–147Google Scholar
  41. Kuska F (1960) Matematická kartografia [Mathematical cartography]. SVTL, BratislavaGoogle Scholar
  42. Lagercrantz U, Ryman N (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44:38–53CrossRefGoogle Scholar
  43. Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17PubMedGoogle Scholar
  44. Liepelt S, Chedaddi R, de Beaulieu J-L et al (2009) Biogeographic history of Abies alba Mill.—a synthesis from paleobotanic and genetic data. Rev Palaeobot Palynol 153:139–149CrossRefGoogle Scholar
  45. Longauer R (1996) Genetic diversity of silver fir (Abies alba Mill.). PhD thesis, Technická univerzita vo Zvolene, ZvolenGoogle Scholar
  46. Longauer R, Gömöry D, Paule L et al (2001) Selection effects of air pollution to gene pools of Norway spruce, European silver fir and European beech. Environ Pollut 115:405–411CrossRefPubMedGoogle Scholar
  47. Lynch M, Conery J, Burger R (1995) Mutational meltdowns in sexual populations. Evolution 49:1067–1080CrossRefGoogle Scholar
  48. Magri D, Vendramin GG, Comps B et al (2006) Palaeobotanical and genetic data outline the Quaternary history of European beech populations. New Phytol 171:199–222CrossRefPubMedGoogle Scholar
  49. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253CrossRefPubMedGoogle Scholar
  50. Mátyás C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54CrossRefGoogle Scholar
  51. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654CrossRefPubMedGoogle Scholar
  52. Millar CI, Westfall RD (1992) Allozyme markers in forest genetic conservation. New For 6:347–371Google Scholar
  53. Miller ES, Weitz CA (1979) Introduction to anthropology. Prentice-Hall, Englewood CliffsGoogle Scholar
  54. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254CrossRefPubMedGoogle Scholar
  55. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  56. Nei M (1975) Molecular population genetic and evolution. North-Holland, AmsterdamGoogle Scholar
  57. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  58. Nei M, Maruyama T, Charkraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  59. Pannatier Y (1996) VARIOWIN: software for spatial data analysis in 2D. Springer-Verlag, New YorkGoogle Scholar
  60. Petit RJ, El-Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  61. Petit RJ, Brewer S, Bordács S et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag 156:49–74CrossRefGoogle Scholar
  62. Petit RJ, Aguinagalde I, de Beaulieu JL et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  63. Riddoch BJ (1993) The adaptive significance of electrophoretic mobility in phosphoglucose isomerase (PGI). Biol J Linn Soc 50:1–17CrossRefGoogle Scholar
  64. Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862CrossRefGoogle Scholar
  65. Schweitzer JA, Bailey JK, Fischer DG et al (2008) Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781CrossRefPubMedGoogle Scholar
  66. Soltis DE, Morris AB, McLachlan JS et al (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293CrossRefPubMedGoogle Scholar
  67. Sperisen C, Buchler U, Gugerli F et al (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263CrossRefPubMedGoogle Scholar
  68. Stoehr MU, El-Kassaby YA (1997) Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. Theor Appl Genet 94:83–90CrossRefPubMedGoogle Scholar
  69. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  70. Tollefsrud MM, Kissling R, Gugerli F et al (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150CrossRefPubMedGoogle Scholar
  71. Vandergast AG, Bohonak AJ, Hathaway SA et al (2008) Are hotspots of evolutionary potential adequately protected in southern California? Biol Conserv 141:1648–1664CrossRefGoogle Scholar
  72. Wehenkel C, Bergmann F, Gregorius HR (2006) Is there a trade-off between species diversity and genetic diversity in forest tree communities? Plant Ecol 185:151–161CrossRefGoogle Scholar
  73. Wehenkel C, Bergmann F, Gregorius HR (2007) Genotype-species interactions in neighbourhoods of forest tree communities. Silvae Genet 56:101–110Google Scholar
  74. Whitham TG, Young WP, Martinsen GD et al (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559–573CrossRefGoogle Scholar
  75. Wimp GM, Young WP, Woolbright SA et al (2004) Conserving plant genetic diversity for dependent animal communities. Ecol Lett 7:776–780CrossRefGoogle Scholar
  76. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar
  77. Zanetto A, Roussel G, Kremer A (1994) Geographic variation of interspecific differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. For Genet 1:111–123Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dušan Gömöry
    • 1
  • Roman Longauer
    • 2
  • Ladislav Paule
    • 1
  • Diana Krajmerová
    • 1
  • Jarmila Schmidtová
    • 1
  1. 1.Technical University in ZvolenZvolenSlovakia
  2. 2.National Forestry CentreZvolenSlovakia

Personalised recommendations