Advertisement

Biodiversity and Conservation

, Volume 19, Issue 6, pp 1749–1768 | Cite as

Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds

  • Simonetta Bagella
  • Stéphanie Gascón
  • Maria Carmela Caria
  • Jordi Sala
  • Maria Antonietta Mariani
  • Dani Boix
Original Paper

Abstract

The current interest in Mediterranean temporary wet habitats, considered to be habitats of European Community Interest, is mainly due to their characteristic flora and fauna. Several contributions characterize each of these two components separately, but considering them simultaneously could reveal possible interactions and a more complete view of the habitat that would be useful to improve conservation measures. This paper investigates crustacean and plant assemblages in six Mediterranean temporary ponds and their relationship with several environmental variables. Significant positive relationships were found between species richness and Shannon diversity index of plant and crustacean assemblages. Crustaceans had a higher similarity among ponds than plants and, consequently, each pond had a more characteristic assemblage of plants than of crustaceans. The two groups showed a different sensitivity to environmental factors and only two factors affected both: altitude and surface area of the wet system. Disturbances (e.g. grazing by cattle) and pond size were very important for plants, whereas they were irrelevant for crustaceans. On the other hand, distance to the nearest pond, hydroperiod length, and water nitrogen were only important for crustaceans. Although similar trends on richness and diversity were observed for both biotic groups, the use of only one of them for conservation programs would not be sufficient. Our results suggest that simultaneously taking into account several community components would result in a better understanding of ecosystem functionality.

Keywords

Altitude Conservation programs Hydroperiod Landscape Land use Pond size Sardinia Wet system 

Notes

Acknowledgements

In Spain, this work was supported by a grant from the Comisión de Investigación Científica y Técnica (CICYT), Programa de Investigación Fundamental (ref. CGL2008-05778/BOS). We sincerely thank prof. Michael G. Barbour, University of California, Davis, and two anonymous reviewers for the review of the text.

References

  1. Alonso M (1996) Crustacea, Branchiopoda. Museo Nacional de Ciencias Naturales. CSIC, MadridGoogle Scholar
  2. Angeler DG, Viedma O, Cirujano S, Álvarez-Cobelas M, Sánchez-Carrillo S (2008) Microinvertebrate and plant beta diversity in dry soils of a semiarid agricultural wetland complex. Mar Freshwater Res 59:418–428CrossRefGoogle Scholar
  3. Angélibert S, Marty P, Céréghino R, Giani N (2004) Seasonal variations in the physical and chemical characteristics of ponds: implications for biodiversity conservation. Aquat Conserv Mar Freshw Ecosys 14:439–456CrossRefGoogle Scholar
  4. Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu R, Mossa L (2004) A contribution to the knowledge of the order Quercetalia ilicis Br.-Bl. ex Molinier 1934 of Sardinia. Fitosociologia 41(1):29–51Google Scholar
  5. Bagella S, Caria MC, Farris E, Filigheddu R (2007) Issues related to the classification of Mediterranean temporary wet habitats according with the European Union Habitats Directive. Fitosociologia 44(2) (Suppl 1):245–249Google Scholar
  6. Bagella S, Caria MC, Farris E, Filigheddu R (2009a) Spatial-time variability and conservation relevance of plant communities in Sardinian Mediterranean temporary wet habitats. Plant Biosys 53(3):435–442Google Scholar
  7. Bagella S, Caria MC, Farris E, Filigheddu R (2009b) Phytosociological analysis in Sardinian Mediterranean temporary wet habitats. Fitosociologia 46(1):11–26Google Scholar
  8. Barca S, Carmignani L, Oggiano G, Pertusati PC, Salvatori I (1996) Carta geologica della Sardegna, Servizio Geologico Nazionale. Carmignani L (ed), Litografia Artistica Cartografica, FirenzeGoogle Scholar
  9. Bazzanti M, Baldoni S, Seminara M (1996) Invertebrate macrofauna of a temporary pond in Central Italy: composition, community parameters and temporal succession. Arch Hydrobiol 137:77–94Google Scholar
  10. Bazzanti M, Seminara M, Baldoni S, Stella A (2000) Macroinvertebrates and environmental factors of some temporary and permanent ponds in Italy. Verh Int Ver Limnol 27:936–941Google Scholar
  11. Bazzanti M, Della Bella V, Seminara M (2003) Factors affecting macroinvertebrate communities in astatic ponds in central Italy. J Freshw Ecol 18:537–548Google Scholar
  12. Beisner BE, Peres PR, Lindstrom ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991CrossRefPubMedGoogle Scholar
  13. Boix D, Sala J, Moreno-Amich R (2001) The faunal composition of Espolla pond (NE Iberian peninsula): the neglected biodiversity of temporary waters. Wetlands 21:577–592CrossRefGoogle Scholar
  14. Boix D, Sala J, Quintana XD, Moreno-Amich R (2004) Succession of the animal community in a Mediterranean temporary pond. J N Am Benthol Soc 23:29–49CrossRefGoogle Scholar
  15. Boix D, Gascón S, Sala J, Martinoy M, Gifre J, Quintana XD (2005) A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian peninsula). Aquat Conserv Mar Freshw Ecosys 15:635–651CrossRefGoogle Scholar
  16. Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana XD (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69CrossRefGoogle Scholar
  17. Bonn A, Gaston KJ (2005) Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodivers Conserv 14:1083–1100CrossRefGoogle Scholar
  18. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  19. Brooks RT (2000) Annual and seasonal variation and the effect of hydroperiod on benthic macroinvertebrates of seasonal forest (“vernal”) ponds in central Massachusetts, USA. Wetlands 20(4):707–715CrossRefGoogle Scholar
  20. Burdett A, Watts R (2009) Modifying living space: an experimental study of the influences of vegetation on aquatic invertebrate community structure. Hydrobiologia 618:161–173CrossRefGoogle Scholar
  21. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  22. Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, Williams PJ (1995) Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biol Conserv 74:125–133CrossRefGoogle Scholar
  23. Crosslé K, Brock MA (2002) How do water regime and clipping influence plant establishment from seed banks and subsequent reproduction? Aquat Bot 74:43–56CrossRefGoogle Scholar
  24. Culioli JL, Foata J, Mori C, Orsini A, Marchand B (2006) Temporal succession of the macroinvertebrate fauna in a Corsican temporary pond. Vie Milieu 56:215–221Google Scholar
  25. Deil U (2005) A review on habitats, plant traits and vegetation of ephemeral wetlands—a global perspective. Phytocoenologia 35:533–705CrossRefGoogle Scholar
  26. Della Bella V, Bazzanti M, Chiarotti F (2005) Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permancence and mesohabitat influence. Aquat Conserv Mar Freshw Ecosys 15:583–600CrossRefGoogle Scholar
  27. Della Bella V, Bazzanti M, Dowgiallo MG, Iberite M (2008) Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation. Hydrobiologia 597:85–95CrossRefGoogle Scholar
  28. Dethier MN, Graham ES, Cohen S, Tear LM (1993) Visual versus random-point percent cover estimations: objective is not always better. Mar Ecol Prog Ser 96:93–100CrossRefGoogle Scholar
  29. Dommanget JL (1987) Etude faunistique et bibliographique des Odonates de France. In Inventaires de Faune et de Flore. Museum National d’Histoire Naturelle/Secrétariat de la Faune et de la Flore, ParisGoogle Scholar
  30. Dussart B (1967) Les Copépodes des eaux continentales I. N. Boubée & Cie, ParisGoogle Scholar
  31. Dussart B (1969) Les Copépodes des eaux continentales II. N. Boubée & Cie, ParisGoogle Scholar
  32. Dvorack J, Best EPG (1982) Macroinvertebrates communities associated with the macrophytes of Lake Vechten: structural, funtional relationships. Hydrobiologia 95:115–126CrossRefGoogle Scholar
  33. Einsle U (1996) Copepoda: Cyclopoida Genera Cyclops, Megacyclops, Acanthocyclops. SPB Academic Publishing bv, AmsterdamGoogle Scholar
  34. Espinar JL, Serrano L (2009) A quantitative hydrogeomorphic approach to the classification of temporary wetlands in the Doñana National Park (SW Spain). Aquat Ecol 43(2):323–334CrossRefGoogle Scholar
  35. Estlander S, Nurminen L, Olin M, Vinni M, Horppila J (2009) Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 62:109–120CrossRefGoogle Scholar
  36. European Commission (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Eur Commun Gaz 206:1–50Google Scholar
  37. Evans D (2006) The habitats of the European Union Habitats Directive. Biol Environ 106 B(3):167–173Google Scholar
  38. Fraga P (2008) Vascular flora associated to Mediterranean temporary ponds on the island of Minorca. Anal Jard Bot Madr 65(2):393–414Google Scholar
  39. Fresenius WKE, Quentin WW, Scheneider W (1988) Water analysis. A practical guide to physico-chemical and microbiological water examination and quality assurance. Springer, BerlinGoogle Scholar
  40. Friday LE (1987) The diversity of macroinvertebrate and macrophyte communities in ponds. Freshw Biol 18:87–104CrossRefGoogle Scholar
  41. Gascón S, Brucet S, Sala J, Boix D, Quintana XD (2007) Comparison of the effects of hydrological disturbance events on benthos and plankton salt marsh communities. Estuar Coast Shelf S 74:419–428CrossRefGoogle Scholar
  42. Gascón S, Boix D, Sala J (2009) Are different biodiversity metrics related to the same factors? A case study from Mediterranean wetlands. Biol Conserv 142:2601–2612CrossRefGoogle Scholar
  43. Giudicelli J, Thiéry A (1998) La faune des mares temporaires, son originalité et son intérêt pour la biodiversité des eaux continentales méditerranéennes. Ecol Mediterr 24(2):135–143Google Scholar
  44. Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of freshwaters. Blackwell, OxfordGoogle Scholar
  45. Grillas P (1990) Distribution of submerged macrophyte in the Camargue in relation to environmental factors. J Veg Sci 1:393–402CrossRefGoogle Scholar
  46. Grillas P, Gauthier P, Yaverkovski N, Perennou C (2004) Mediterranean Temporary Pools 1. Station Biologique de la Tour du Valat, Arles, p 228Google Scholar
  47. Heck KL, Crowder JLB (1991) Habitat structure and predator-prey interactions in vegetated aquatic systems. In: McCoy ED, Bell SS, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London, pp 281–295Google Scholar
  48. Hill NM, Keddy P (1992) Prediction of rarities from habitat variables: coastal plain plants on Nova Scotian lakeshores. Ecology 73:1852–1859CrossRefGoogle Scholar
  49. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343):151–164CrossRefGoogle Scholar
  50. Leibold MA, Chase JM, Shurin JB, Downing AL (1997) Species turnover and the regulation of trophic structure. Annu Rev Ecol Evol S 28:467–494CrossRefGoogle Scholar
  51. Lodge DF (1985) Macrophyte–gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshw Biol 15:695–708CrossRefGoogle Scholar
  52. McCoy ED, Bell SS, Mushinsky HR (1991) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, LondonGoogle Scholar
  53. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  54. Meerhoff M, Clemente JM, De Mello FT, Iglesias C, Pedersen AR, Jeppesen E (2007a) Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Glob Change Biol 13:1888–1897CrossRefGoogle Scholar
  55. Meerhoff M, Iglesias C, De Mello FT, Clemente JM, Jensen E, Lauridsen TL, Jeppesen E (2007b) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw Biol 52:1009–1021CrossRefGoogle Scholar
  56. Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag GmbH, Heidelberg, BerlinGoogle Scholar
  57. Moss B, Stephen D, Álvarez C, Bécares E, Van de Bund W, Collings SE, Van Donk E, De Eyto E, Feldmann T, Fernández-Aláez C, Fernández-Aláez M, Franken RJM, García-Criado F, Gross EM, Gyllström M, Hansson L-A, Irvine K, Järvalt A, Jensen J-P, Jeppesen E, Kairesalo T, Kornijów R, Krause T, Künnap H, Laas A, Lill E, Lorens B, Luup H, Miracle MR, Nõges P, Nõges T, Nykänen M, Ott I, Peczula W, Peeters ETHM, Phillips G, Romo S, Russell V, Salujõe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes: a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv Mar Freshw Ecosys 13:507–549CrossRefGoogle Scholar
  58. Nicolet P, Biggs J, Fox G, Hodson MJ, Reynolds C, Whitfield M, Williams P (2004) The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol Conserv 120:265–282CrossRefGoogle Scholar
  59. Oertli B, Auderset Joye D, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70CrossRefGoogle Scholar
  60. Okun N, Mehner T (2005) Interactions between juvenile roach or perch and their invertebrate prey in littoral reed versus open water enclosures. Ecol Freshw Fish 14:150–160CrossRefGoogle Scholar
  61. Paukert CP, Willis DW (2003) Aquatic invertebrate assemblages in shallow prairie lakes: fish and environmental influences. J Freshwater Ecol 18:523–536Google Scholar
  62. Pieri V, Martens K, Naselli-Flores L, Marrone F, Rossetti G (2006) Distribution of Recent ostracods in inland waters of Sicily (Southern Italy). J Limnol 65:1–8Google Scholar
  63. Rhazi L, Grillas P, Mounirou Touré A, Tan Ham L (2001) Impact of land use and activities on water, sediment and vegetation of temporary pools in Morocco. Life Sci 324:165–177Google Scholar
  64. Rhazi L, Rhazi M, Grillas P, Tan Ham L, El Khyari D (2006) Richness and structure of plant communities in temporary pools from western Morocco: influence of human activities. Hydrobiologia 570:197–203CrossRefGoogle Scholar
  65. Rivas-Martínez S, Díaz TE, Fernando-González F, Izco J, Loidi J, Lousã M, Penas Á (2002) Vascular plant communities of Spain and Portugal. Itinera Geobotanica 15(1–2):5–922Google Scholar
  66. Rolon AS, Maltchik L (2006) Environmental factors as predictors of aquatic macrophyte and composition in wetlands of southern Brazil. Hydrobiologia 556:221–231CrossRefGoogle Scholar
  67. Sagrario MDG, Balseiro E (2003) Indirect enhancement of large zooplankton by consumption of predacious macroinvertebrates by littoral fish. Arch Hydrobiol 158:551–574CrossRefGoogle Scholar
  68. Schaffers AP, Raemakers IP, Sykora KV, ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794CrossRefPubMedGoogle Scholar
  69. Scheffer M, van Geest GJ, Zimmer K, Jeppesen E, Søndergaard M, Butler MG, Hanson MA, Declerck S, De Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231CrossRefGoogle Scholar
  70. Schneider DW, Frost TM (1996) Habitat duration and community structure in temporary ponds. J N Am Benthol Soc 15(1):64–86CrossRefGoogle Scholar
  71. Seminara M, Vagaggini D, Margaritora FG (2008) Differential responses of zooplankton assemblages to environmental variation in temporary and permanent ponds. Aquat Ecol 42:129–140CrossRefGoogle Scholar
  72. Smirnov NN (1992) The Macrothricidae of the world. SPB Academic Publishing bv, The HagueGoogle Scholar
  73. Soszka GJ (1975) The invertebrates on submerged macrophytes in three Masurian lakes. Ekol Polska 23:371–391Google Scholar
  74. Strikland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Bulletin of Fishery Research Board of Canada, Ottawa, p 167Google Scholar
  75. Studinski JM, Grubbs SA (2007) Environmental factors affecting the distribution of aquatic invertebrates in temporary ponds in Mammoth Cave National Park, Kentucky, USA. Hydrobiologia 575:211–220CrossRefGoogle Scholar
  76. Tavernini S, Mura G, Rossetti G (2005) Factors Influencing the Seasonal Phenology and Composition of Zooplankton Communities in Mountain Temporary Pools. Int Rev Hydrobiol 90:358–375CrossRefGoogle Scholar
  77. ter Braak CJF, Šmilauer P (2002) Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York, USAGoogle Scholar
  78. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964–1980) Flora Europea, vol 1–5. Cambridge University Press, CambridgeGoogle Scholar
  79. Williams DD (1997) Temporary ponds and their invertebrate communities. Aquat Conserv Mar Freshw Ecosys 7:105–117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Simonetta Bagella
    • 1
  • Stéphanie Gascón
    • 2
  • Maria Carmela Caria
    • 1
  • Jordi Sala
    • 2
  • Maria Antonietta Mariani
    • 1
  • Dani Boix
    • 2
  1. 1.Dipartimento di Scienze Botaniche, Ecologiche e GeologicheUniversity of SassariSassariItaly
  2. 2.Faculty of Sciences, Institute of Aquatic EcologyUniversity of GironaGironaSpain

Personalised recommendations