Skip to main content

Advertisement

Log in

Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forest

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The removal of timber during harvesting substantially reduces important invertebrate habitat, most noticeably microhabitats associated with fallen trees. Oribatid mite diversity in downed woody material (DWM) using species-level data has not been well studied. We investigated the influence of decaying logs on the spatial distribution of oribatid mites on the forest floor at the sylviculture et aménagement forestiers écosystémique (SAFE) research station in the Abitibi region in NW Québec. In June 2006, six aspen logs were selected for study, and samples were taken at three distances for each log: directly on top of the log (ON), directly beside the log (ADJ) and at least one metre away from the log and any other fallen wood (AWAY). Samples ON logs consisted of a litter layer sample, an upper wood sample and an inner wood sample. Samples at the ADJ and AWAY distances consisted of litter samples and soil cores. The highest species richness was collected ON logs, and logs harboured a distinct oribatid species composition compared to nearby forest floor. There were species-specific changes in abundance with increasing distance away from DWM, which indicates an influence of DWM in structuring oribatid assemblages on the forest floor. Additionally, each layer (litter, wood and soil) exhibited a unique species composition and hosted a different diversity of oribatid mites. This study further highlights the importance of DWM to forest biodiversity by creating habitat for unique assemblages of oribatid mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CWD:

Coarse woody debris

DWM:

Downed woody material

SAFE:

Sylviculture et aménagement forestiers écosystémique

ON:

Directly on top of a log

ADJ:

Directly beside a log

AWAY:

At least one metre away from a log and any other fallen wood

References

  • Anderson JM (1975) Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J Anim Ecol 44:475–495

    Article  Google Scholar 

  • Anderson JM (1978) Inter- and intra-habitat relationships between woodland Cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32:341–348

    Article  Google Scholar 

  • Aoki J (1967) Microhabitats of oribatid mites on a forest floor. Bull Nat Sci Mus (Tokyo) 10:133–140

    Google Scholar 

  • Battigelli JP, Spence JR, Langor DW, Berch SM (2004) Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can J For Res 34:1136–1149

    Article  Google Scholar 

  • Behan VM, Hill SB (1978) Feeding habits and spore dispersal in oribatid mites in the North American arctic. Revue D’ecologie et de Biologie du Sol 15:497–516

    Google Scholar 

  • Behan-Pelletier VM (1994) Mycobates (Acari: Oribatida: Mycobatidae) of America North of Mexico. Can Entomol 126:1301–1361

    Article  Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:4111–4423

    Google Scholar 

  • Bengtsson J, Persson T, Lundkvist H (1997) Long-term effects of logging residue addition and removal on macroarthropods and enchytraeids. J Appl Ecol 34:1014–1022

    Article  Google Scholar 

  • Brais S, Harvey BD, Bergeron Y, Messier C, Greene D, Belleau A, Paré D (2004a) Testing forest ecosystem management in boreal mixedwoods of northwestern Quebec; initial response of aspen stands to different levels of harvesting. Can J For Res 34:431–446

    Article  Google Scholar 

  • Brais S, Harvey B, Bergeron Y (2004b) Rapport final: Élaboration d’une approche sylvicole écosystémique pour la forêt boréale mixte. Project SAFE. Unité de recherche et de développement forestiers de l’Abitibi-Témiscamingue, UQAT

  • Buddle CM (2001) Spiders (Araneae) associated with downed woody material in a deciduous forest in central Alberta, Canada. Agric For Entomol 3:241–251

    Article  Google Scholar 

  • Buddle CM, Beguin J, Bolduc E, Mercado A, Sackett TE, Selby RD, Varady-Szabo H, Zeran RM (2005) The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. Can Entomol 137:120–127

    Article  Google Scholar 

  • Crossley DA Jr, Blair JM (1991) A high-efficiency, “low-technology” Tullgren- type extractor for soil microarthropods. Agric Ecosyst Environ 34:187–192

    Article  Google Scholar 

  • Dansereau P-R, Bergeron Y (1993) Fire history in the southern boreal forest of northwestern Quebec. Can J For Res 23:25–32

    Article  Google Scholar 

  • Déchêne AD, Buddle CM (2009) Effects of experimental forest harvesting on oribatid mite biodiversity. For Ecol Manag 258:1331–1341

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Edwards CA (1991) The assessment of populations of soil-inhabiting invertebrates. Agric Ecosyst Environ 34:145–176

    Article  Google Scholar 

  • Environment Canada (2003) Canadian climate normals, Eureka River, Alberta. Environment Canada, Ottawa, ON. Available from http://climate.weatheroffice.ec.gc.ca/climate_normals/results_e.html. Accessed 10 September 2007

  • Esseen P-A, Ehnström B, Ericson L, Sjöberg K (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  • Evans AM, Clinton PW, Allen RB, Frampton CM (2003) The influence of logs in the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. For Ecol Manag 184:251–262

    Article  Google Scholar 

  • Fries C, Johansson O, Pettersson B, Simonsson P (1997) Silvicultural models to maintain and restore natural stand structures in Swedish boreal forests. For Ecol Manag 94:89–103

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gotelli NJ, Entsminger GL (2006) EcoSim: null models software for ecology, version 7. Acquired Intelligence Inc. & Kesey-Bear, Jericho, VT. Available at http://www.garyentsminger.com/ecosim/index.htm

  • Graham SA (1925) The felled tree trunk as an ecological unit. Ecology 6:397–411

    Article  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23

    Article  Google Scholar 

  • Haila Y (1994) Preserving ecological diversity in boreal forests: ecological background, research, and management. Ann Zool Fenn 31:203–217

    Google Scholar 

  • Hammond HEJ, Langor DW, Spence JR (2004) Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Can J For Res 34:1–19

    Article  Google Scholar 

  • Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81:1120–1132

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Leinkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Hoover MD, Lunt HA (1952) A key for the classification of forest humus types. Soil Sci Soc Am Proc 16:368–370

    Google Scholar 

  • Jabin M, Mohr D, Kappes H, Topp W (2004) Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. For Ecol Manag 194:61–69

    Article  Google Scholar 

  • Johnston JM, Crossley DA (1993) The significance of coarse woody debris for the diversity of soil mites. In: McMinn JW, Crossley DA (eds) Proceedings of the workshop on coarse woody debris in southern forests: effects on biodiversity. General Technical Report No. SE-94. USDA Forest Service, Athens, GA, pp 82–87

  • Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv 7:749–764

    Article  Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood—lessons for dead wood management. Silva Fennica 39:289–309

    Google Scholar 

  • Kaila L, Martikainen P, Punttila P (1997) Dead trees left in clearcuts benefit saproxylic Coleoptera adapted to natural disturbances in boreal forest. Biodivers Conserv 6:1–18

    Article  Google Scholar 

  • Kuuluvainen T, Laiho R (2004) Long-term forest utilization can decrease forest floor microhabitat diversity: evidence from boreal Fennoscandia. Can J For Res 34:303–309

    Article  Google Scholar 

  • Lindo Z, Visser S (2004) Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Can J For Res 34:998–1006

    Article  Google Scholar 

  • Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia 12:434–463

    Google Scholar 

  • Maraun M, Migge S, Schaefer M, Scheu S (1998) Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42:232–240

    Google Scholar 

  • Marra JL, Edmonds RL (1998) Effects of coarse woody debris and soil depth on the density and diversity of soil invertebrates on clearcut and forested sites on the Olympic peninsula, Washington. Community Ecosyst Ecol 27:1111–1124

    Google Scholar 

  • Marshall VG (1972) Comparison of two methods of estimating efficiency of funnel extractors for soil microarthropods. Soil Biol Biogeochem 4:417–426

    Article  Google Scholar 

  • Marshall VG, Reeves RM, Norton RA (1987) Catalogue of the Oribatida (Acari) of continental United States and Canada. Mem Entomol Soc Can 139:418

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD: multivariate analysis of ecological data (version 4.17). MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • Niedbala W (2002) Ptyctimous mites (Acari, Oribatida) of the nearctic region. Monogr Up Sil Mus (Bytom, Poland) 4:261

    Google Scholar 

  • Niemelä J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368

    Google Scholar 

  • Norton RA (1985) Aspects of the biology and systematics of soil arachnids, particularly saprophagous and mycophagous mites. Quaest Entomol 21:523–541

    Google Scholar 

  • Norton RA, Behan-Pelletier VM (2009) Oribatida. In: Krantz G, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, Texas

  • Prinzing A (2005) Corticolous arthropods under climatic fluctuations: compensation is more important than migration. Ecography 28:17–28

    Article  Google Scholar 

  • SAS Institute Inc. (2003) Statistical Analysis Software (SAS) v. 9.1. SAS Institute Inc., Cary, North Carolina

  • Schiegg K (2000) Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 7:290–298

    Google Scholar 

  • Schneider K, Maraun M (2005) Feeding preferences among dark pigmented fungal taxa (‘‘Dematiacea’’) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49:61–67

    Article  Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Seastedt TR, Crossley DA Jr (1988) Soil arthropods and their role in decomposition and mineralization processes. In: Swank WT, Crossley DA Jr (eds) Ecological studies, 66. Forest Hydrology and Ecology at Coweeta; Symposium, Athens, Georgia, USA, October 1984. XVII+469P. Springer-Verlag New York, Inc., New York, USA; Berlin West Germany. Illus. Maps. Series information: ecological studies. PT book. Meeting, pp 233–244

  • Seastedt TR, Reddy MV, Cline SP (1989) Microarthropods in decaying wood from temperate coniferous and deciduous forests. Pedobiologia 33:69–77

    Google Scholar 

  • Siira-Pietikäinen A, Penttinen R, Huhta V (2008) Oribatid mites (Acari: Oribatida) in boreal forest floor and decaying wood. Pedobiologia 52:111–118

    Article  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G (1987) Patterns of log decay in old-growth Douglas-fir forests. Can J For Res 17:1585–1595

    Article  Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg

    Google Scholar 

  • Stewart GH, Burrows LE (1994) Coarse woody debris in old-growth temperate beech (Nothofagus) forests of New Zealand. Can J For Res 24:1989–1996

    Article  Google Scholar 

  • Van Lear DH (1993) Dynamics of coarse woody debris in southern forest ecosystems. In: Proceedings of the workshop for coarse woody debris in southern forests: effects on biodiversity. United States Department of Agriculture Forest Service, Athens, GA

  • Varady-Szabo H, Buddle CM (2006) On the relationships between ground-dwelling spider (Araneae) assemblages and dead wood in a northern sugar maple forest. Biodivers Conserv 15:4119–4141

    Article  Google Scholar 

  • Waddell KL (2002) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indicators 1:139–153

    Article  Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). In: Dahl, Die Tierwelt Deutschlands, Bd. 76. Verlag Goecke & Evers, Keltern, 520 pp

  • Work TT, McCullough DG (2000) Lepidopteran communities in two forest ecosystems during the first gypsy moth outbreaks in northern Michigan. Environ Entomol 29:884–900

    Article  Google Scholar 

  • Zimmerman GM, Goetz H, Mielke PW Jr (1985) Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology 66:606–661

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jean-François Aublet, Véronique Lafrance-Rivard and Josée Frenette for assistance in the field and Suzanne Brais for her assistance. Financial support was provided by Fonds Québécois de la Recherche sur la Nature et les Technologies, Centre d’étude de la forêt (CEF), FQRNT, Regroupement stratégiques—Centre de recherché and National Sciences and Engineering Research Council (NSERC discovery grant to CMB and NSERC PGS-M to ADD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea D. Déchêne.

Appendix

Appendix

Oribatid mite species collected from six decayed logs in four vertical layers (Litter, Upper wood, Inner wood and Soil) and three horizontal distances (ON, ADJ and AWAY)

Spcode

Family

Genus

Species

Authority

Litter ON

Litter ADJ

Litter AWAY

Upper ON

Inner ON

Soil ADJ

Soil AWAY

Total

Achiclar

Achipteriidae

Achipteria

clarencei

Nevin 1977

342*

16

2

6

0

1

0

367

Achisp1

Achipteriidae

Achipteria

sp1

 

56*

3

2

15

4

0

0

80

Adornr.p

Astegistidae

Adoristes

nr. poppei

 

1

0

0

0

0

0

0

1

Adorsp1

Liacaridae

Adoristes

sp1

 

0

1

0

0

0

0

0

1

Adorsp3

Liacaridae

Adoristes

sp3

 

0

1

1

0

0

0

0

2

Archluri

Phthiracaridae

Archiphthiracarus

luridus

(Ewing 1909)

7

3

0

0

1

0

0

11

Archsp2

Phthiracaridae

Archiphthiracarus

sp2

 

1

1

0

0

0

0

0

2

Atrostri

Phthiracaridae

Atropacarus

striculus

(Koch 1835)

5

28

139

0

0

0

1

173

Autolong

Autognetidae

Autogneta

longilamellata

(Michael 1885)

4

1

1

0

0

0

0

6

Banklanc

Thyrisomidae

Banksinoma

l. canadensis

Fujikawa 1979

1

5

0

0

4

4

1

15

Belbsp1

Damaeidae

Belba

sp1

 

37*

0

0

1

20

0

0

58

Caragran

Carabodidae

Carabodes

granulatus

Banks 1895

2

1

3

0

0

0

0

6

Caralaby

Carabodidae

Carabodes

labyrinthicus

(Michael 1879)

111*

1

0

0

0

0

0

112

Carapoly

Carabodidae

Carabodes

polyporetes

Reeves 1991

26

21

6

2

0

0

0

55

Cephcora

Cepheidae

Cepheus

corae

Jacot 1928

1

0

0

0

0

0

0

1

Cerabipi

Peloppiidae

Ceratoppia

bipilis

(Hermann 1804)

58

5

12

3

0

0

0

78

Ceracusp

Ceratozetidae

Ceratozetes

cuspidatus

Jacot 1939

0

23

3

11

0

55

28

120

Ceragrac

Ceratozetidae

Ceratozetes

gracilis

(Michael 1884)

1

28

22

0

0

14

3

68

Chamcusp

Chamobatidae

Chamobates

cuspidatus

(Michael 1884)

33

41

25

0

0

0

1

100

Chamsp1

Chamobatidae

Chamobates

sp1

 

32

11

0

1

0

0

0

44

Cultbicu

Astegistidae

Cultroribula

bicultrata

(Berlese 1905)

1

1

0

0

1

0

0

3

Dentnr.h

Achipteriidae

Dentachipteria

nr. highlandensis

 

118*

0

0

1

0

0

0

119

Eniominu

Eniochthoniidae

Eniochthonius

minutissimus

(Berlese 1903)

534

523

497

15

4

6

7

1586

Erembrev

Eremaeidae

Eremaeus

brevitarsus

(Ewing 1917)

6

2

5

0

0

0

0

13

Euphnr.f

Euphthiracaridae

Euphthiracarus

nr. fulvus

 

3

2

2

0

0

0

0

7

Euphnr.v

Euphthiracaridae

Euphthiracarus

nr. vicinus

 

5

26

24

0

8

19*

5

87

Euptorna

Cepheidae

Eupterotegaeus

ornatissimus

(Berlese 1908)

7

0

0

0

0

0

0

7

Fuscfusc

Ceratozetidae

Fuscozetes

fuscipes

(Koch 1844)

79

50

127

0

0

0

1

257

Grapsp1

Oppiidae

Graptoppia

sp1

 

8

3

3

0

0

0

0

14

Hafeniti

Tenuialidae

Hafenferrefia

nitidula

(Banks 1906)

1

0

0

0

0

0

0

1

Haplsp1

Haplozetidae

Haplozetes

sp1

 

19

25

2

3

0

0

0

49

Hemiquad

Scheloribatidae

Hemileius

quadripilis

(Fitch 1856)

2

0

1

0

0

0

0

3

Hermsp1

Hermanniellidae

Hermanniella

sp1

 

116

4

4

0

0

0

1

125

Hyporufu

Hypochthoniidae

Hypochthonius

rufulus

Koch 1835

0

0

0

0

1

0

0

1

Liebsp1

Scheloribatidae

Liebstadia

sp1

 

12*

2

1

0

0

0

0

15

Lioclapp

Brachychthoniidae

Liochthonius

lapponicus

(Trägårdh 1910)

90

65

60

5

3

0

0

223

Liocnr.b

Brachychthoniidae

Liochthonius

nr. brevis

 

31

11

9

0

1

0

0

52

Liocnr.l

Brachychthoniidae

Liochthonius

nr. lapponicus

 

79

14

0

0

0

0

0

93

Liocsp1

Brachychthoniidae

Liochthonius

sp1

 

0

0

0

2

31

0

0

33

Micrsimp

Euphthiracaridae

Microtritia

simplex

(Jacot 1930)

13

49

6

0

0

0

0

68

Mycoincu

Mycobatidae

Mycobates

incurvatus

Hammer 1952

85*

0

0

0

0

0

0

85

Nanhsp1

Nanhermanniidae

Nanhermannia

sp1

 

0

3

0

2

2

1

1

9

Neoglute

Ceratozetidae

Neogymnobates

luteus

Hammer 1955

8

0

0

0

0

0

0

8

Neoraura

Parakalummidae

Neoribates

aurantiacus

(Oudemans 1914)

1

0

1

0

0

0

0

2

Nothsilv

Nothridae

Nothrus

silvestris

Nicolet 1855

0

0

0

1

4

0

0

5

Oppinova

Oppiidae

Oppiella

nova

(Oudemans 1902)

935

2104

1080

277

89

509

196

5190

Oppinr.n

Oppiidae

Oppia

nr. nitens

 

162*

4

0

14

1

0

0

181

Oppitran

Oppiidae

Oppiella

translamellata

Willmann 1923

19

5

0

0

0

0

0

24

Oribbrev

Oribatellidae

Oribatella

brevicornuta

Jacot 1934

1

6

2

0

0

0

0

9

Oribheni

Oribotritiidae

Oribotritia

henicos

Niedbala 2002

3

0

0

0

2

0

0

5

Oribmira

Cepheidae

Oribatodes

mirabilis

Banks 1895

20

52

7

0

0

3

0

82

Oribquad

Oribatellidae

Oribatella

quadricornuta

(Michael 1880)

0

0

1

0

0

0

0

1

Oribsp1

Oribatellidae

Oribatella

sp1

 

2

0

2

0

0

0

1

5

Palahyst

Palaeacaridae

Palaeacarus

hystricinus

Trägårdh 1932

0

0

0

0

0

4

0

4

Paraleon

Scheloribatidae

Paraleius

leontonycha

(Berlese 1910)

4

5

10

0

0

0

0

19

Phthbore

Phthiracaridae

Phthiracarus

boresetosus

Jacot 1930

32

50

25

1

0

0

0

108

Phthlong

Phthiracaridae

Phthiracarus

longulus

(Koch 1841)

59

36

28

1

4

1

0

129

Pilonr.b

Galumnidae

Pilogalumna

nr. binadalares

 

5

84*

46

0

0

0

0

135

Platsp1

Camisiidae

Platynothrus

sp1

 

0

0

1

0

0

2

3

6

Platthor

Camisiidae

Platynothrus

thori

(Berlese 1904)

30

11

21

0

0

0

0

62

Podotect

Podopterotegaeidae

Podopterotegaeus

tectus

Aoki 1969

97*

0

0

16

14

0

1

128

Poecspic

Brachychthoniidae

Poecilochthonius

spiciger

(Berlese 1910)

0

6

2

1

0

0

0

9

Propnr.m

Phenopelopidae

Propelops

nr. minnesotensis

 

7

33

22

0

0

0

0

62

Protolig

Oribotritiidae

Protoribotritia

oligotricha

Maerkel 1963

0

4

1

0

3

1

0

9

Quadnr.s

Quadroppiidae

Quadroppia

nr. skookumchucki

 

114*

1

10

4

2

1

1

133

Quadquad

Quadroppiidae

Quadroppia

quadricarinata

(Michael 1885)

123

28

63

42

4

5

7

272

Rhysardu

Euphthiracaridae

Rhysotritia

ardua

(Koch 1841)

18

1

9

0

0

0

0

28

Schen.sp

Scheloribatidae

Scheloribates

n.sp.

 

6

6

2

0

1

0

0

15

Schepall

Scheloribatidae

Scheloribates

pallidulus

(Koch 1841)

1138

463

293

28

5

17

3

1947

Schesp1

Scheloribatidae

Scheloribates

sp1

 

0

1

0

0

0

0

0

1

Sellrost

Brachychthoniidae

Sellnickochthonius

rostratus

(Jacot 1936)

2

0

0

1

0

0

0

3

Subisp1

Oppiidae

Subiasella

sp1

 

12

6

0

0

0

0

0

18

Suctsp1

Suctobelbidae

Suctobelbella

sp1

 

448

633

210

97

73

62

22

1545

Suctsp2

Suctobelbidae

Suctobelbella

sp2

 

25

36

4

1

5

7

0

78

Suctsp3

Suctobelbidae

Suctobelbella

sp3

 

210

201

117

21

8

6

0

563

Suctsp4

Suctobelbidae

Suctobelbella

sp4

 

2

1

0

0

5*

0

0

8

Tectvela

Tectocepheidae

Tectocepheus

velatus

(Michael 1880)

166

371

200

2

4

2

3

748

Trhyamer

Trhypochthoniidae

Trhypochthonius

americanus

(Ewing 1908)

9

12

4

0

0

0

0

25

Xylooblo

Haplozetidae

Xylobates

oblongus

(Ewing 1909)

35

25

2

11

69*

5

0

147

Zygoexil

Oribatulidae

Zygoribatula

exilis

(Nicolet 1855)

3

0

0

0

0

0

0

3

  1. * Significant indicator species

Rights and permissions

Reprints and permissions

About this article

Cite this article

Déchêne, A.D., Buddle, C.M. Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forest. Biodivers Conserv 19, 237–256 (2010). https://doi.org/10.1007/s10531-009-9719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9719-y

Keywords

Navigation