Biodiversity and Conservation

, Volume 18, Issue 14, pp 3963–3978 | Cite as

The effect of topsoil removal in restored heathland on soil fauna, topsoil microstructure, and cellulose decomposition: implications for ecosystem restoration

  • Jan Frouz
  • Rudy Van Diggelen
  • Vaclav Pižl
  • Josef Starý
  • Ladislav Háněl
  • Karel Tajovský
  • Jiří Kalčík
Original Paper


Communities of soil macrofauna, oribatid mites, and nematodes as well as vegetation and soil chemistry were studied on twelve plots representing three replicates of the following treatments: agricultural meadow, heathland, and heathland restored either by partial or complete topsoil removal 15 years earlier. We also studied the effect of soil macrofauna on decomposition and the microstructure of the soil surface layer with litterbags in combination with the analysis of thin soil sections. The communities of soil macrofauna and oribatid mites significantly differed between agricultural meadows and heathlands. The partial and complete topsoil removal plots were more similar to heathlands with respect to macrofauna and to agricultural meadows with respect to oribatid mites. The density and diversity of soil macrofauna was higher in agricultural meadows than in heathlands; in particular, earthworms, litter transformers, root feeders, and microsaprophags were more abundant on meadows. Heathlands, in contrast, contained a much higher diversity of oribatid mites. The community structure of nematodes did not significantly differ among the treatments. Analysis of thin soil sections revealed a thick organic fermentation layer in heathlands, which was absent in agricultural meadows and only weakly developed in the topsoil removal plots. In agricultural meadows, litterbags and thin soil sections indicated that abundant macrofauna, including endogeic earthworms, were very effective in removing the litter from the soil surface and mixing it into the mineral soil. Possible effects of this soil mixing on restoration success are discussed.


Restoration Soil formation Oribatid mites Nematoda Earthworms Humus form Soil microstructure 



The study was supported by research plan AV0Z60660521 given to the Institute of Soil Biology BC AS CR, and by a travel grant given to Jan Frouz. Dr. Bruce Jafee is thanked for linguistic improvements.


  1. Aerts R, Berendse F (1988) The effect of increased nutrient avaiability on vegetation dynamics in wet heathlands. Vegetatio 76(1–2):63–69Google Scholar
  2. Allison M, Ausden M (2004) Successful use of topsoil removal and soil amelioration to create heathland vegetation. Biol Conserv 120:221–228CrossRefGoogle Scholar
  3. Allison M, Ausden M (2006) Effects of removing the litter and humic layers on heathland establishment following plantation removal. Biol Conserv 127:177–182CrossRefGoogle Scholar
  4. Benckiser G (1997) Fauna in soil ecosystems. Marcel Dekker Inc., New York, 387 ppGoogle Scholar
  5. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural. Eur Veg J Ecol 86:717–738Google Scholar
  6. Bohlen PJ, Scheu S, Hale CM et al (2004) Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2(8):427–435CrossRefGoogle Scholar
  7. Bullock P, Fedoroff N, Jogerius A et al. (1985) Handbook for soil thin section description. Waine Research, Albrighton, 153 ppGoogle Scholar
  8. De Deyn GB, Raaijmakers CE, Zoomer HR (2003) Soil invertebrate fauna enhance grassland succession and diversity. Nature 422:711–713CrossRefPubMedGoogle Scholar
  9. de Goede RGM (1996) Effects of sod-cutting on the nematode community of a secondary forest of Pinus sylvestris L. Biol Fertil Soils 22:227–236CrossRefGoogle Scholar
  10. De Smidt JT (1979) Origen and destruction of northwest European heath vegetation. In: Willmanns O, Tüxen R (eds) Werden und Vergehen von Pflanzengesellschaften. Cramer, Vaduz, pp 411–435Google Scholar
  11. Delettre YR, Morvan N, Trehen P et al (2008) Local biodiversity and multi-habitat use in empidoid flies (Insecta : Diptera, Empidoidea). Biodivers Conserv 7:9–25CrossRefGoogle Scholar
  12. Dunger W (1991) Zur Primärsukzession humiphager Tirgrupen auf Bergbauflächen. Zool Jahrb Syst 118:423–447Google Scholar
  13. Dunger W, Voigtlander K (2005) Assessment of biological soil quality in wooded reclaimed mine sites. Geoderma 129:32–44CrossRefGoogle Scholar
  14. Frouz J (1999) Use of soil dwelling Diptera (Insecta, Diptear) as bioindicators: a review of ecological requirements and response to disturbance. Agric Ecosyst Environ 74:167–186CrossRefGoogle Scholar
  15. Frouz J, Keplin B, Pižl V (2001) Soil biota and upper soil layers development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284CrossRefGoogle Scholar
  16. Frouz J, Elhottová D, Kuráž V et al (2006) Effect of soil macrofauna on other soil biota and soil formation in reclaimed and non reclaimed post mining sites: a result of field microcosms experiment. Appl Soil Ecol 33:308–320CrossRefGoogle Scholar
  17. Frouz J, Prach K, Pizl V et al (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121CrossRefGoogle Scholar
  18. Háněl L (2003) Soil nematodes in cambisoil agroecosystem of the Czech Republic. Biologia 52:205–216Google Scholar
  19. Härdtle W, Assmann T, van Diggelen R (2009) Renaturierung und Management von Heiden. In: Zerbe S (ed) Renaturierung von Ökosystemen in Mitteleuropa. Spektrum Akademischer Verlag, Elsevier GmbH (in press)Google Scholar
  20. Jackson ML (1958) Soil chemical analysis. Prentice Hall, Inc., Englewood Clifs, New YorkGoogle Scholar
  21. Kardol P, Van der Wal A, Brezemer MT et al (2008) Restoration of species-rich grassland on ex arable land: seed addition outweight soil fertility reduction. Biol Conserv 141:2208–2217CrossRefGoogle Scholar
  22. Kardol P, Brezemer MT, Van der Putten WH (2009) Soil organism and plant introduction in restoration of species rich grassland communities. Restor Ecol 17:258–269CrossRefGoogle Scholar
  23. Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ pollut 124:179–221CrossRefPubMedGoogle Scholar
  24. Lavelle P, Bignell D, Lepage M et al (1997) Soil function in changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  25. Lin YC, James R, Dolman PM (2007) Conservation of heathland ground beetles (Coleoptera, Carabidae): the value of lowland coniferous plantations. Biodivers Conserv 16:1337–1358CrossRefGoogle Scholar
  26. Lopez MG, Matesanz MR, Lidon JBJ et al (2003) The effect of Hormogaster elisae (Hormogastridae) on the abundance of soil Collembola and Acari in laboratory cultures. Biol Fertil Soils 37:231–236Google Scholar
  27. Maes D, van Dyck H, Vanreusel W et al (2003) Ant communities (Hymenoptera : Formicidae) of Flemish (north Belgium) wet heathlands, a declining habitat in Europe. Eur J Entomol 100:545–555Google Scholar
  28. Murphy J, Rieley JP (1962) A modification of a single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  29. Oberndorfer EC, Lundholm JT (2009) Species richness, abundance, rarity and environmental gradients in coastal barren vegetation. Biodivers Conserv 18:1523–1553CrossRefGoogle Scholar
  30. Ponge JF (2003) Humus form in terrestrial ecosystem: a framework to biodiversity. Soil Biol Biochem 35:935–945CrossRefGoogle Scholar
  31. Power SA, Green ER, Barker CG et al (2006) Ecosystem recovery: heathland response to a reduction in nitrogen deposition. Glob Chang Biol 12:1241–1252CrossRefGoogle Scholar
  32. Rusek J (1978) Pedozootishe sucession warend der Entwicklung von Okosystem. Pedobiologie 18:426–433Google Scholar
  33. Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–296CrossRefGoogle Scholar
  34. Schinner F, Kandeller E, Ohlinger R et al. (1995) Methods in soil biology. Springer Verlag, Berlin, 417 ppGoogle Scholar
  35. Strüve-Kusenberg R (1981) Sukzesion und trophische Struktur der Bodenfauna von Brachlandflachen. Pedobiologia 21:132–141Google Scholar
  36. Telfer MG, Eversham BC (1996) Ecology and conservation of heathland Carabidae in eastern England. Ann Zool Fenn 33:133–138Google Scholar
  37. Ter Braak CJF, Smilauer P (1998) Canoco reference manual and user guide to Canoco for Windows: software for Canonical Community Ordination (version 4). Microcomputer power, Ithaca, 352 ppGoogle Scholar
  38. Vandereen LJ, Dueck TA, Berdowksi JJM et al (1991) Influence of NH3 and (NH4)2SO4 on heathland vegetation. Acta Bot Neerl 40(4):281–296Google Scholar
  39. Vergeer P, van den Berg LJL, Baar J et al (2006) The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: implications for heathland restoration. Biol Conserv 129:226–235CrossRefGoogle Scholar
  40. Verhagen R, Klooker J, Bakker JP, et al (2001) Restoration success of low-production plant communities on former agricultural soils after top-soil removal. Appl Veg Sci 4:75–82 CrossRefGoogle Scholar
  41. Verhagen R, van Diggelen R (2006) Spatial variation in atmospheric nitrogen deposition on low canopy vegetation. Environ Pollut 144:826–832CrossRefPubMedGoogle Scholar
  42. Wallwork JA (1976) The distribution and diversity of soil fauna. Academic press, London, 355 pGoogle Scholar
  43. Wanner M, Dunger W (2002) Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. Eur J Soil Biol 38:137–143CrossRefGoogle Scholar
  44. Watanabe FS, Olsen SR (1965) Test for ascorbic acid method for determining phosphates in water and sodium bicarbonate extracts from soils. Soil Sci Soc Am Proc 29:677–680CrossRefGoogle Scholar
  45. Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990Google Scholar
  46. Werger MJA, Prantice IC, Helsper HPH (1985) The effect of sod cutting to different depths on caluna hethland regeneration. J Environ Manag 20:181–188Google Scholar
  47. Yeates CW (1998) Feeding in free-living soil nematodes a functional approach. In: Perry RN, Wricht DJ (eds) The physiology and biochemistry of free-living and parasitic nematodes. CABI publishing, Wallingford, pp 245–269Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jan Frouz
    • 1
    • 4
  • Rudy Van Diggelen
    • 2
    • 3
  • Vaclav Pižl
    • 1
  • Josef Starý
    • 1
  • Ladislav Háněl
    • 1
  • Karel Tajovský
    • 1
  • Jiří Kalčík
    • 1
  1. 1.Institute of Soil BiologyBiological Centre Academy of Sciences of the Czech RepublicCeske BudejoviceCzech Republic
  2. 2.Community and Conservation Ecology GroupUniversity of GroningenHarenThe Netherlands
  3. 3.Ecosystem Management Research GroupUniversity of AntwerpWilrijkBelgium
  4. 4.Institute for Environmental StudiesCharles UniversityPragueCzech Republic

Personalised recommendations