Advertisement

Biodiversity and Conservation

, Volume 18, Issue 13, pp 3467–3482 | Cite as

Are streamside buffers edge-affected habitat for ground-dwelling forest beetle assemblages?

  • Sue Baker
  • Leon Barmuta
  • Simon Grove
  • Alastair Richardson
Original Paper

Abstract

Reservation of forest in riparian buffers is common practice in commercial forestry areas worldwide, potentially providing valuable habitat for biodiversity dependent on mature forest. However, the habitat value of narrow reserve corridors can be compromised by edge effects. We investigated the habitat value of streamside buffers in wet eucalypt forest for ground-dwelling beetles in Tasmania, Australia. Beetles were collected with pitfall traps in five replicates of four habitats: unlogged corridors of mature forest in streamside reserves (buffers) with clearfelling-derived logging regeneration either side; continuous mature upslope forest; continuous mature riparian forest; and <20-year-old upslope clearfelling-derived logging regeneration. Streamside reserve widths on each side of the stream were on average 40 ± 6 m (±95% CI) from reserve edge to stream. Beetle assemblages in logging regeneration differed substantially from those in the unlogged habitats, including the streamside reserves. Streamside reserve assemblages nevertheless differed from those of the continuous unlogged areas. Assemblage composition in streamside reserves was most similar to that in continuous mature riparian forest, although beetle diversity was higher in the reserves. Our results suggest that although streamside reserves provide habitat for the majority of commonly collected beetle species occurring in continuous mature forest, wider reserve corridors in the wet eucalypt forests of Tasmania may be required to provide habitat that is not edge-affected.

Keywords

Coleoptera Conservation Corridors Epigaeic Forest management Streamside reserves Wet eucalypt forest 

Notes

Acknowledgments

We are grateful to Tegan Kelly, Russell Lewis-Jones and Stewart Alexander for assistance with initial extraction of beetles from pitfall samples. The study was supported by a Maxwell Ralph Jacobs Fund grant to fund fieldwork, and a Forestry Tasmania grant to fund beetle identification. Ann Watson and Graham Edgar gave statistical advice and Graham Edgar and Peter McQuillan kindly commented on a draft of the manuscript. We are grateful to the anonymous referees, whose constructive comments greatly improved the paper.

References

  1. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525. doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 CrossRefGoogle Scholar
  2. Baker SC (2006) A comparison of litter beetle assemblages (Coleoptera) in mature and recently clearfelled Eucalyptus obliqua forest. Aust J Entomol 45:130–136. doi: 10.1111/j.1440-6055.2006.00526.x CrossRefGoogle Scholar
  3. Baker SC, Barmuta LA (2006) Evaluating spatial autocorrelation and depletion in pitfall-trap studies of environmental gradients. J Insect Conserv 10:269–276. doi: 10.1007/s10841-006-0016-8 CrossRefGoogle Scholar
  4. Baker SC, Richardson AMM, Barmuta LA, Thomson R (2006) Why conservation reserves should not always be concentrated in riparian areas: a study of ground-dwelling beetles in wet eucalypt forest. Biol Conserv 133:156–168. doi: 10.1016/j.biocon.2006.05.029 CrossRefGoogle Scholar
  5. Baker SC, Barmuta LA, McQuillan PB, Richardson AMM (2007a) Estimating edge effects on ground-dwelling beetles at clearfelled non-riparian stand edges in Tasmanian wet eucalypt forest. For Ecol Manag 239:92–101CrossRefGoogle Scholar
  6. Baker SC, Richardson AMM, Barmuta LA (2007b) Site effects outweigh riparian influences on ground-dwelling beetles adjacent to first order streams in wet eucalypt forest. Biodivers Conserv 16:1999–2014. doi: 10.1007/s10531-006-9056-3 CrossRefGoogle Scholar
  7. Baker SC, Barmuta LA, Richardson AMM (2009) Response of ground-dwelling beetles across logging coupe edges into streamside reserves. Aust J Ent (in press)Google Scholar
  8. Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252. doi: 10.1046/j.1523-1739.1998.98036.x CrossRefGoogle Scholar
  9. Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226. doi: 10.3354/meps046213 CrossRefGoogle Scholar
  10. Clinnick PF (1985) Buffer strip management in forest operations: a review. Aust For 48:34–45Google Scholar
  11. Darveau M, Labbe P, Beauchesne P, Belanger L, Huot J (2001) The use of riparian forest strips by small mammals in a boreal balsam fir forest. For Ecol Manag 143:95–104. doi: 10.1016/S0378-1127(00)00509-0 CrossRefGoogle Scholar
  12. Davies PE, Nelson M (1994) Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Aust J Mar Freshw Res 45:1289–1305. doi: 10.1071/MF9941289 CrossRefGoogle Scholar
  13. Davies KF, Melbourne BA, Margules CR (2001) Effects of within- and between-patch processes on community dynamics in a fragmentation experiment. Ecology 82:1830–1846CrossRefGoogle Scholar
  14. Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271. doi: 10.1890/03-0110 CrossRefGoogle Scholar
  15. Didham RK (1997) The influence of edge effects and forest fragmentation on leaf litter invertebrates in Central Amazonia. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants: ecology management and conservation of fragmented communities. University of Chigago Press, Chigago, pp 55–70Google Scholar
  16. Driscoll DA (2008) The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape. Oikos 117:297–309. doi: 10.1111/j.2007.0030-1299.16202.x CrossRefGoogle Scholar
  17. Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition, and remnant size. Conserv Biol 19:182–194. doi: 10.1111/j.1523-1739.2005.00586.x CrossRefGoogle Scholar
  18. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  19. Ewers RM, Didham RK (2007) The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv Biol 21:926–936. doi: 10.1111/j.1523-1739.2007.00720.x CrossRefPubMedGoogle Scholar
  20. Ewers RM, Didham RK (2008) Pervasive impact of large-scale edge effects on a beetle community. Proc Natl Acad Sci USA 105:5426–5429. doi: 10.1073/pnas.0800460105 CrossRefPubMedGoogle Scholar
  21. Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:96–106. doi: 10.1890/0012-9658(2007)88[96:SIBEAA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  22. Forest Practices Board (2000) Forest practices code. Forest Practices Board, HobartGoogle Scholar
  23. Forestry Tasmania (2008) Forestry Tasmania sustainable forest management report 2007. HobartGoogle Scholar
  24. Franklin JF, Berg DR, Thornburgh DA, Tappeiner JC (1997) Alternative silvicultural approaches to timber harvesting: variable retention harvest systems. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century: the science of ecosystem management. Island Press, Washington, pp 111–139Google Scholar
  25. Greenslade PJM (1973) Sampling ants with pitfall traps: digging-in effects. Insect Soc 20:343–353. doi: 10.1007/BF02226087 CrossRefGoogle Scholar
  26. Gregory SV (1997) Riparian management in the 21st century. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century: the science of ecosystem management. Island Press, Washington, pp 69–85Google Scholar
  27. Grove S (2004) The effectiveness of wildlife habitat strips in maintaining mature forest carabid beetle assemblages at Tarraleah in Tasmania’s central highlands. Division of Research and Development, Forestry Tasmania, HobartGoogle Scholar
  28. Grove S, Yaxley B (2005) Wildlife habitat strips and native forest ground-active beetle assemblages in plantation nodes in northeast Tasmania. Aust J Entomol 44:331–343. doi: 10.1111/j.1440-6055.2005.00490.x CrossRefGoogle Scholar
  29. Hagar JC (1999) Influence of riparian buffer width on bird assemblages in western Oregon. J Wildl Manag 63:484–496. doi: 10.2307/3802633 CrossRefGoogle Scholar
  30. Halme E, Niemelä J (1993) Carabid beetles in fragments of coniferous forest. Ann Zool Fenn 30:17–30Google Scholar
  31. Hannon SJ, Paszkowski CA, Boutin S, DeGroot J, Macdonald E, Wheatley M, Eaton B (2002) Abundance and species composition of amphibians, small mammals, and songbirds in riparian forest buffer strips of varying widths in the boreal mixedwood Alberta. Can J Res 32:1784–1800. doi: 10.1139/x02-092 CrossRefGoogle Scholar
  32. Heliölä J, Koivula M, Niemelä J (2001) Distribution of carabid beetles (Coleoptera, Carabidae) across a boreal forest-clearcut ecotone. Conserv Biol 15:370–377. doi: 10.1046/j.1523-1739.2001.015002370.x CrossRefGoogle Scholar
  33. Henttonen H, Haukisalmi V, Pirkkalainen H, Niemelä J (1998) Ekologisten käytävien merkityksestä keskisuomalaisissa talousmetsissä. In: Annila E (ed) Monimuotoinen metsämetsä monimuotoisuuden tutkimusohjelman väliraportti. Metsäntutkimulaitoksen tiedonantoja, pp 255–271Google Scholar
  34. Hobbs RJ (1992) The role of corridors in conservation: solution or bandwagon. Trends Ecol Evol 7:389–392. doi: 10.1016/0169-5347(92)90010-9 CrossRefGoogle Scholar
  35. Hylander K, Nilsson C, Gothner T (2004) Effects of buffer-strip retention and clearcutting on land snails in Boreal riparian forests. Conserv Biol 18:1052–1062. doi: 10.1111/j.1523-1739.2004.00199.x CrossRefGoogle Scholar
  36. Lindenmayer DB, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, WashingtonGoogle Scholar
  37. MacDonald MA, Taylor RA, Candy SG (2002) Bird assemblages in wildlife habitat strips in a Tasmanian plantation matrix. Pac Conserv Biol 8:82–98Google Scholar
  38. Magura T, Tóthmérész B (1997) Testing edge effect on carabid assemblages in an oak-hornbeam forest. Acta Zool Acad Sci Hung 43:303–312Google Scholar
  39. Magurran AE (2004) Measuring biological diversity. Blackwell, MaldenGoogle Scholar
  40. McDermott CL, Cashore B, Kanowski P (2007) A global comparison of forest practice policies using Tasmania as a constant case. In: GISF research paper 010. School of Forestry and Environmental Studies, Yale University, Connecticut, USA, p 64Google Scholar
  41. Meggs JM, Munks SA (2003) Distribution, habitat characteristics and conservation requirements of a forest-dependent threatened invertebrate Lissotes latidens (Coleoptera: Lucanidae). J Insect Conserv 7:137–152. doi: 10.1023/A:1027333323362 CrossRefGoogle Scholar
  42. Mönkkönen M (1999) Managing Nordic boreal forest landscapes for biodiversity: ecological and economic perspectives. Biodivers Conserv 8:85–99. doi: 10.1023/A:1008813225086 CrossRefGoogle Scholar
  43. Mönkkönen M, Mutanen M (2003) Occurrence of moths in boreal forest corridors. Conserv Biol 17:468–475. doi: 10.1046/j.1523-1739.2003.01414.x CrossRefGoogle Scholar
  44. Niemelä J (2001) The utility of movement corridors in forested landscapes. Scand J For Res Suppl 3:70–78. doi: 10.1080/028275801300090645 CrossRefGoogle Scholar
  45. Pohl GR, Langor DW, Spence JR (2007) Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biol Conserv 137:294–307. doi: 10.1016/j.biocon.2007.02.011 CrossRefGoogle Scholar
  46. R Development Core Team (2003) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  47. Ries L, Fletcher RJ Jr, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522. doi: 10.1146/annurev.ecolsys.35.112202.130148 CrossRefGoogle Scholar
  48. Saunders DA, Hobbs RJ (1991) The role of corridors in conservation: what do we know and where do we go? In: Saunders DA, Hobbs RJ (eds) Nature conservation 2: the role of corridors. Surrey Beatty, Chipping Norton, pp 421–427Google Scholar
  49. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32. doi: 10.1111/j.1523-1739.1991.tb00384.x CrossRefGoogle Scholar
  50. Simberloff D, Cox J (1987) Consequences and costs of conservation corridors. Conserv Biol 1:63–71. doi: 10.1111/j.1523-1739.1987.tb00010.x CrossRefGoogle Scholar
  51. Soulé ME, Gilpin ME (1991) The theory of wildlife corridor capability. In: Saunders DA, Hobbs RJ (eds) Nature conservation 2: the role of corridors. Surrey Beatty, Chipping Norton, pp 3–8Google Scholar
  52. Spence JR, Langor DW, Niemelä J, Cárcamo HA, Currie CR (1996) Northern forestry and carabids: the case for concern about old-growth species. Ann Zool Fenn 33:173–184Google Scholar
  53. Taylor RJ (1991) Fauna conservation in production forests in Tasmania. Forest Practices Unit, Forestry Commission Tasmania, HobartGoogle Scholar
  54. Taylor R, Michaels K, Bashford D (2000) Occurrence of carabid beetles in retained unlogged strips within production forests of southern Tasmania. In: Craig JL, Mitchell N, Saunders DA (eds) Nature conservation 5: nature conservation in production environments: managing the matrix. Surrey Beatty, Chipping Norton, pp 120–127Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sue Baker
    • 1
    • 3
  • Leon Barmuta
    • 2
  • Simon Grove
    • 3
  • Alastair Richardson
    • 1
  1. 1.School of Zoology and CRC for ForestryUniversity of TasmaniaHobartAustralia
  2. 2.School of Zoology and Tasmanian Aquaculture and Fisheries InstituteUniversity of TasmaniaHobartAustralia
  3. 3.Forestry Tasmania and CRC for ForestryHobartAustralia

Personalised recommendations