Biodiversity and Conservation

, Volume 18, Issue 9, pp 2433–2448 | Cite as

Integrating approaches towards the conservation of forest genetic resources: a case study of Araucaria angustifolia

  • Valdir Marcos Stefenon
  • Neusa Steiner
  • Miguel Pedro Guerra
  • Rubens Onofre Nodari
Original Paper


In the past years the conservation of forest genetic resources has been widely recognized because of the risk of adverse effects associated with global changes in the environment. Since little effort has been made towards conservation of these resources, the assessment and the integration of information and knowledge so far generated are valuable tools in order to promote their conservation. In the present work the Brazilian conifer Araucaria angustifolia was used as a case study, integrating information, published between 1980 and 2007, about genetics, biotechnology, palaeobotany, and archeology. These studies were interpreted towards the conservation needs and strategies of the species germplasm. The main conclusions for the conservation of A. angustifolia genetic resources are: (1) despite the reduction of genetic diversity by unsustainable forest exploitation, the genetic system of A. angustifolia seems to be efficient to protect this species against rapid losses of its genetic diversity; (2) conservation measures starting now may be efficient, since the genetic structures of existing populations is more largely influenced by the past evolutionary process than by human disturbance occurred in the last century; (3) there are opportunities to save the genetic resources of the species, if simple measures are taken to safeguard the continued existence of the few remaining araucaria forests. Emerged as a general conclusion that the use of sound scientific arguments supported by different areas of the science could be a very powerful instrument in persuading decision-makers, also by governments, taking into account forest genetic resources as a primary issue for the future.


Brazilian pine Genetic structure Biotechnology Conifer Population genetics 



The research was supported by a Post-Doctoral grant from CNPq/Brazilian Ministry of Science and Technology to VMS. NS, MPG, and RON thanks to CNPq for grants and fellowships.


  1. Astarita LV, Guerra MP (1998) Early somatic embryogenesis in Araucaria angustifolia—induction and maintenance of embryonal-suspensor mass cultures. Braz J Plant Physiol 10:113–118Google Scholar
  2. Auler NMF, Reis MS, Guerra MP, Nodari RO (2002) The genetics and conservation of Araucaria angustifolia: I. Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina, Brazil. Genet Mol Biol 25:329–338. doi: 10.1590/S1415-47572002000300014 CrossRefGoogle Scholar
  3. Behling H (1995) Investigations into the Late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Veget Hist Archaeobot 4:127–152. doi: 10.1007/BF00203932 CrossRefGoogle Scholar
  4. Behling H (1997a) Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 129:407–422. doi: 10.1016/S0031-0182(97)88177-1 CrossRefGoogle Scholar
  5. Behling H (1997b) Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South Brazil). Rev Palaeobot Palynol 97:109–121. doi: 10.1016/S0034-6667(96)00065-6 CrossRefGoogle Scholar
  6. Behling H (2002) South and Southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27. doi: 10.1016/S0031-0182(01)00349-2 CrossRefGoogle Scholar
  7. Behling H, Negrelle RRB (2006) Vegetation and pollen rain relationship from the Tropical Atlantic Rain forest in southern Brazil. Braz Arch Biol Technol 49:631–642. doi: 10.1590/S1516-89132006000500013 CrossRefGoogle Scholar
  8. Behling H, Bauermann SG, Neves PC (2001) Holocene environmental changes in the São Francisco de Paula region, southern Brazil. J S Am Earth Sci 14:631–639. doi: 10.1016/S0895-9811(01)00040-2 CrossRefGoogle Scholar
  9. Bitencourt ALV, Krauspenhar PM (2006) Possible prehistoric anthropogenic effect on Araucaria angustifolia (Bert.) O. Kuntze expansion during the Late Holocene. Rev Bras Paleo 9:109–116. doi: 10.4072/rbp.2006.1.12 Google Scholar
  10. Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591. doi: 10.1038/sj.hdy.6801019 PubMedCrossRefGoogle Scholar
  11. Bittencourt JVM, Sebbenn AM (2008) Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TwoGener analysis. Conserv Genet 9:855–868CrossRefGoogle Scholar
  12. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution Int J Org Evolution 32:550–570. doi: 10.2307/2406616 Google Scholar
  13. Demarchi G (2003) Criopreservação de culturas embriogênicas de Araucaria angustifolia Bert O. Kuntze. Dissertation, Universidade Federal de Santa CatarinaGoogle Scholar
  14. Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259. doi: 10.1038/hdy.1994.35 CrossRefGoogle Scholar
  15. Finkeldey R (1996) Conservation of forest genetic resources in tropical Asia. In: Park YG, Sakomoto S (eds) Biodiversity and conservation of plant genetic resources in Asia. Japan Scientific Society Press, TokyoGoogle Scholar
  16. Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, BerlinGoogle Scholar
  17. Geburek T, Konrad H (2008) Why the conservation of forest genetic resources has not worked. Conserv Biol 22:267–274. doi: 10.1111/j.1523-1739.2008.00900.x PubMedCrossRefGoogle Scholar
  18. Geburek Th, Turok J (2005) Conservation and management of forest genetic resources in Europe. Arbora Publisher, ZvolenGoogle Scholar
  19. Guerra MP, Silveira V, Reis MS, Schneider L (2002) Exploração, manejo e conservação da araucária (Araucaria angustifolia). In: Simões LL, Lino CF (eds) Sustenável mata atlântica: a exploração de seus recursos florestais. Editora SENAC, São PauloGoogle Scholar
  20. Guerra MP, Steiner N, Mantovani A, Nodari RO, Reis MS, dos Santos KL (2008) Evolução, ontogênese e diversidade genética em Araucaria angustifolia. In: Barbieri RL, Stumpf ERT (eds) Origem e evolução de Plantas Cultivadas. EMBRAPA, Brasília, pp 149–184Google Scholar
  21. Hampp R, Mertz A, Schaible R, Schwaigere M, Nehls U (2000) Distinction of Araucaria angustifolia seeds from different locations in Brazil by a specific DNA sequence. Trees (Berl) 14:429–434. doi: 10.1007/s004680000060 CrossRefGoogle Scholar
  22. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, SunderlandGoogle Scholar
  23. Hendrick PW (2005) A standardized genetic differentiation measure. Evolution Int J Org Evolution 59:1633–1638Google Scholar
  24. Hueck K (1952) Verbreitung und Standortansprüche der brasilianischen Araukarie (Araucaria angustifolia). Forstwissenchaftliches Centralblatt 71:272–289. doi: 10.1007/BF01822117 CrossRefGoogle Scholar
  25. Iriarte J, Behling H (2007) The expansion of Araucaria forest in the southern Brazilian highlands during the last 4,000 years and its implications for the development of the Taquara/Itararé Tadition. Environ Archaeol 12:115–127. doi: 10.1179/174963107x226390 CrossRefGoogle Scholar
  26. Iritani C, Zanette F, Cislinkski J (1992) Aspectos anatômicos da cultura in vitro da Araucaria angustifolia. I. Organização e desenvolvimento dos meristemas axilares ortotrópicos de segmentos caulinares. Acta Bot Paranaense 21:57–76Google Scholar
  27. Iritani C, Zanette F, Cislinkski J (1993) Aspectos anatômicos da cultura in vitro da Araucaria angustifolia. II. O enraizamento dos brotos axilares. Acta Bot Paranaense 22:1–13Google Scholar
  28. Kageyama P, Jacob WS (1980) Variação genética entre e dentro de progênies de uma população de Araucaria angustifolia (Bert.) O. Ktze. In: IUFRO Meeting on Forestry Problems of the Genus Araucaria, Curitiba, 21–28 October 1979Google Scholar
  29. Kettle CJ, Hollingsworth PM, Jaffré T, Moran B, Ennos RA (2007) Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Mol Ecol 16:3581–3591. doi: 10.1111/j.1365-294X.2007.03419.x PubMedCrossRefGoogle Scholar
  30. Kitamura K, Rahman MYBA (1992) Gentic diversity among natural populations of Agathis borneensis (Araucariaceae), a tropical rain forest conifer from Brunei Darussalam, Borneo, Southeast Asia. Can J Bot 70:1945–1949. doi: 10.1139/b92-242 CrossRefGoogle Scholar
  31. Ledru M-P, Salgado-Labouriau ML, Lorscheitter ML (1998) Vegetation dynamics in southern and central Brazil during the last 10, 000 yr B.P. Rev Palaeobot Palynol 99:131–142. doi: 10.1016/S0034-6667(97)00049-3 CrossRefGoogle Scholar
  32. Machado SA, Siqueira JDP (1980) Distribuição natural da Araucaria angustifolia (Bert.) O. Ktze. In: IUFRO Meeting on Forestry Problems of the Genus Araucaria, Curitiba, 21–28 October 1979Google Scholar
  33. Mantovani A, Morellato APC, Reis MS (2006) Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze. J Hered 97:466–472. doi: 10.1093/jhered/esl031 PubMedCrossRefGoogle Scholar
  34. Mazza MCM (1997) Use of RAPD markers in the study of genetic diversity of Araucaria angustifolia (Bert.) populations in Brazil. International Foundation for Science, FlorianópolisGoogle Scholar
  35. Medri C, Ruas PM, Higa AR, Murakami M, a Ruas C (2003) Effects of forest management on the genetic diversity in a population of Araucaria angustifolia (Bert.). O. Kuntze. Silvae Genet 52:202–205Google Scholar
  36. Monteiro RFR, Spelz RM (1980) Ensaio de 24 progênies de Araucaria angustifolia (Bert.) O. Ktze. In: IUFRO Meeting on Forestry Problems of the Genus Araucaria, Curitiba, 21–28 October 1979Google Scholar
  37. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  38. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. doi: 10.1111/j.1365-294X.2004.02141.x PubMedCrossRefGoogle Scholar
  39. Nybom H, Bartish IV (2000) Effects of life traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114. doi: 10.1078/1433-8319-00006 CrossRefGoogle Scholar
  40. Patreze CM (2008) Análise molecular da diversidade genética em una população natural de Araucaria angustifolia (Bertol.) Kuntze no estado de São Paulo. Dissertation, Universidade de São PauloGoogle Scholar
  41. Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12:2331–2343. doi: 10.1046/j.1365-294X.2003.01926.x PubMedCrossRefGoogle Scholar
  42. Petit RJ, Duminil J, Fineschi S, Hampe A, Slavini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. doi: 10.1111/j.1365-294X.2004.02410.x PubMedCrossRefGoogle Scholar
  43. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  44. Reitz PR, Klein RM (1966) Araucariaceae: flora ilustrada catarinense. Herbário Barbosa Rodrigues, ItajaíGoogle Scholar
  45. Robertson A, Hollingsworth PM, Kettle CJ, Ennos RA, Gardner MF (2004) Characterization of nuclear microsatellites in New Caledonian Araucaria species. Mol Ecol Notes 4:62–63CrossRefGoogle Scholar
  46. Ruiz E, Gonzáles F, Torres-Díaz C, Fuentes G, Mardones M, Stuessy T, Samuel R, Becerra J, Silva M (2007) Genetic diversity and differentiation with and among Chilean populations of Araucaria araucana (Araucariaceae) based on allozyme variability. Taxon 56:1221–1228Google Scholar
  47. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10. doi: 10.1016/0169-5347(86)90059-5 CrossRefGoogle Scholar
  48. Salgueiro F, Caron H, de Souza MIF, Kremer A, Margis R (2005) Characterization of nuclear microsatellite loci in South American Araucariaceae species. Mol Ecol Notes 5:256–258. doi: 10.1111/j.1471-8286.2005.00899.x CrossRefGoogle Scholar
  49. Santos ALW, Silveira V, Steiner N, Vidor M, Guerra MP (2002) Somatic embryogenesis in Parana Pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz Arch Biol Technol 45:97–106. doi: 10.1590/S1516-89132002000100015 CrossRefGoogle Scholar
  50. Schlögl PS (2000) Análise da diversidade genética em regiões não codificadoras de DNAs de cloroplasto em Araucaria angustifolia por PCR-RFLP. Dissertation, Universidade Federal de Santa CatarinaGoogle Scholar
  51. Schlögl PS, Souza AP, Nodari RO (2007) PCR-RFLP analysis of non-coding regions of cpDNA in Araucaria angustifolia (Bert.) O. Kuntze. Genet Mol Biol 30:423–427CrossRefGoogle Scholar
  52. Schmidt AB, Ciampi AY, Guerra MP, Nodari RO (2007) isolation and characterization of microsatelite markers for Araucaria angustifolia (Araucariaceae). Mol Ecol Notes 7:340–342. doi: 10.1111/j.1471-8286.2006.01602.x CrossRefGoogle Scholar
  53. Schmitz PI, Becker IIB (2006) Os primitivos engenheiros do planalto e suas estruturas subterrâneas: a tradição Taquara. In: Schmitz PI (ed) Pré-história do Rio Grande do Sul, 2nd edn. Instituto Anchietano de Pesquisas—Unisinos, São LeopoldoGoogle Scholar
  54. Sebbenn AM, Pontinha AAS, Giannotti E, Kageyama PY (2003) Genetic variation in provenance-progeny test of Araucaria angustifolia (Bert.) O. Ktze. in São Paulo, Brazil. Silvae Genet 52:181–184Google Scholar
  55. Sebbenn AM, Pontinha AAS, Freitas SA, Freitas JA (2004) Variação genética em cinco procedências de Araucaria angustifolia (Bert.) O. Ktze. No sul do estado de São Paulo. Rev Inst Florestal 16:91–99Google Scholar
  56. Shimizu JY, Higa AR (1980) Variação genética entre procedências de Araucaria angustifolia (Bert.) O. Ktze. na região de Itapeva-SP, estimada até o 6.° ano de idade. In: IUFRO Meeting on Forestry Problems of the Genus Araucaria, Curitiba, 21–28 October 1979Google Scholar
  57. Shimizu JY, Jaeger P, Sopchaki SA (2000) Variabilidade genética em uma população remanescente de araucária no Parque Nacional do Iguaçú, Brasil. Bol Pesq Fl 41:18–36Google Scholar
  58. Silveira V, Steiner N, Santos ALW, Nodari RO, Guerra MP (2002) Biotechnology tolls in Araucaria angustifolia conservation and improvement: inductive factors affecting somatic embryogenesis. Crop Breed Appl Biotechnol 2:463–470Google Scholar
  59. Silveira V, Santa-Catarina C, Tun NN, Scherer GFE, Handro W, Guerra MP, Floh EIS (2006) Polyamine efects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98. doi: 10.1016/j.plantsci.2006.02.015 CrossRefGoogle Scholar
  60. Soares RV (1979) Considerações sobre a regeneração natural da Araucaria anustifolia. Floresta 10:12–18Google Scholar
  61. Sousa MIF (2006) Análise da diversidade genética em populações de Araucaria angustifolia (Bertol.) Kuntze utilizando marcador AFLP. Dissertation, Universidade Federal do Rio de JaneiroGoogle Scholar
  62. Sousa VA, Hattemer HH (2003) Pollen dispersal and gene flow by pollen in Araucaria angustifolia. Aust J Bot 51:309–317. doi: 10.1071/BT02037 CrossRefGoogle Scholar
  63. Sousa VA, Hattemer HH, Robinson IP (2002) Inheritance and linkage relationships of isoenzymes variants of Araucaria angustifolia (Bert.) O. Ktze. Silvae Genet 51:191–195Google Scholar
  64. Sousa VA, Robinson IP, Hattemer HH (2004) Variation and population structure at enzyme gene loci in Araucaria angustifolia (Bert.). O. Ktze. Silvae Genet 53:12–19Google Scholar
  65. Sousa VA, Sebbenn AM, Hattemer HH, Ziehe M (2005) Correlated mating in populations of a dioecious Brazilian conifer, Araucaria angustifolia (Bert.) O. Ktze. For Genet 12:107–119Google Scholar
  66. Stefenon VM, Nodari RO, Reis MS (2003) Padronização de protocolo AFLP e sua capacidade informative para análise da diversidade genética em Araucaria angustifolia. Scientia Forestalis 64:163–171Google Scholar
  67. Stefenon VM, Nodari RO, Guerra MP (2004) Genética e conservação de Araucaria angustifolia: III. Protocolo de extração de DNA e capacidade informativa de marcadores RAPD para análise da diversidae genética em populações naturais. Biotemas 17:47–63Google Scholar
  68. Stefenon VM, Gailing O, Finkeldey R (2006) Searching natural populations of Araucaria. angustifolia: conservation strategies for forest genetic resources in southern Brazil. In: Bohnes J and Paar E (eds) Forstliche Genressources als Produktionsfaktor. Proceedings of the 26th Tagung der Arbeitsgemeinschaft Forstgenetik und Forstpflanzenzüchtung. Hessen-Forst Forsteinrichtung, Information, VersuchwesenGoogle Scholar
  69. Stefenon VM, Gailing O, Finkeldey R (2007a) Genetic structure of Araucaria angustifolia (Araucariaceae) in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525. doi: 10.1055/s-2007-964974 PubMedCrossRefGoogle Scholar
  70. Stefenon VM, Gailing O, Finkeldey R (2007b) Recovery and conservation of Araucaria forest in Brazil through plantation’s establishment: a genetic point of view. In: Proceedings of the Conference on International Agricultural Research for Development, Tropentag 2007. http://www.tropentag2007/abstract/full/160.pdf cited 20 may 2008
  71. Stefenon VM, Gailing O, Finkeldey R (2008a) The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia. Plant Biol 10:356–364. doi: 10.1111/j.1438-8677.2008.00048.x PubMedCrossRefGoogle Scholar
  72. Stefenon VM, Behling H, Gailing O, Finkeldey R (2008b) Evidences of delayed size recovery in Araucaria angustifolia populations after post-glacial colonization of highlands in Southeastern Brazil. An Acad Bras Cienc 80:433–443. doi: 10.1590/S0001-37652008000300005 PubMedGoogle Scholar
  73. Stefenon VM, Gailing O, Finkeldey R (2008c) Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia). For Ecol Manage 255:2718–2725. doi: 10.1016/j.foreco.2008.01.036 CrossRefGoogle Scholar
  74. Steiner N (2005) Parâmetros fisiológicos e bioquímicos durante e embriogênese zigótica e somática de Araucaria angustifolia Bert O. Kuntze. Dissertation, Universidade Federal de Santa CatarinaGoogle Scholar
  75. Steiner N, Vieira FN, Maldonado S, Guerra MP (2005) Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Braz Arch Biol Technol 48:895–903CrossRefGoogle Scholar
  76. Steiner N, Santa-Catarina C, Silveira V, Floh EIS, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62CrossRefGoogle Scholar
  77. Ziehe M, Gregorius H-R, Glock H, Hattemer HH, Herzog S (1989) Gene resources and gene conservation in forest trees: general concepts. In: Scholz F, Gregorius H-R, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Valdir Marcos Stefenon
    • 1
  • Neusa Steiner
    • 2
  • Miguel Pedro Guerra
    • 2
  • Rubens Onofre Nodari
    • 2
  1. 1.Universidade Federal do Pampa, Campus São GabrielSão GabrielBrazil
  2. 2.Laboratory of Developmental Physiology and Plant Genetics, Graduate Program in Plant Genetic ResourcesFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations