Advertisement

Biodiversity and Conservation

, Volume 18, Issue 4, pp 957–968 | Cite as

Reserve selection and persistence: complementing the existing Atlantic Forest reserve system

  • Míriam Plaza Pinto
  • Carlos Eduardo Viveiros Grelle
Original Paper

Abstract

This study is an exercise to check the efficiency of the existing reserve system, and to show how systematic conservation planning—using information available and the complementarity concept—can improve the basis for decisions and minimize costs. We verified the performance, in number of cells and primate species representation, of the existing Atlantic Forest (Brazil) reserve network with a quarter-degree resolution grid, with 1,884 cells. We used occurrence data of 20 endemic primate species, and the maps of 237 existing reserves. Reserve networks were selected to represent primate species first considering no pre-existing reserves in Atlantic Forest, and then, considering the existing reserve system, taking into account the minimum area for viable population of the larger species (Northern muriqui Brachyteles hypoxanthus). Reserve selection was carried out using the complementarity concept implemented by a simulated annealing algorithm. Primate species representation (at least one occurrence in the network) could be achieved with 8% of the existing reserve system (nine cells in relation to the 120 in the existing reserve system). We found that today’s reserve system represents 89% of endemic primate species, excluding the species Coimbra Filho’s titi monkey (Callicebus coimbrai) and Marcgraf’s capuchin (Cebus flavius). The networks selected without considering existing reserves contained nine cells. The networks selected considering existing reserves (120 cells), had two new cells necessary to represent all the primates. This does not mean that a viable alternative is to start from zero (i.e., nonexistent reserves). Identifying critical supplementary areas using biodiversity information to fill the gaps and then starting “conservation in practice” in these areas should be priorities.

Keywords

Brazilian Atlantic forest Complementarity Efficiency Gap analysis Irreplaceability Primates Simulated annealing 

Notes

Acknowledgments

We thank the anonymous reviewer for many comments that improved the manuscript. We are very grateful to M.V. Vieira and D.S.D. Araújo for valuable comments on an earlier draft of the manuscript. L.P. Pinto and M. Fonseca from CI-Brazil for the most of shapefiles of reserves. M.P·P. is supported by a scholarship of FAPERJ. Also, we thank M. Figueiredo for useful help in mapping.

References

  1. Andelman S, Ball I, Davis F, et al. (1999) SITES v. 1.0: an analytical toolbox for designing ecoregional conservation portfolios. Technical report, The Nature Conservancy, Australia. Available via http://www.biogeog.ucsb.edu/projects/tnc/toolbox.html
  2. Araújo MB, Williams PH, Cabeza M et al (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626. doi: 10.1111/j.1365-2486.2004.00828.x CrossRefGoogle Scholar
  3. Araújo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conserv Biol 21:1423–1432PubMedGoogle Scholar
  4. Bode M, Wilson KA, Brooks TM et al (2008) Cost-effective global conservation spending is robust to taxonomic group. Proc Natl Acad Sci USA 105:6498–6501. doi: 10.1073/pnas.0710705105 PubMedCrossRefGoogle Scholar
  5. Brito D, Grelle CE (2006) Estimating minimum area of suitable habitat and viable population size for the northern muriqui (Brachyteles hypoxanthus). Biodivers Conserv 15:4197–4210. doi: 10.1007/s10531-005-3575-1 CrossRefGoogle Scholar
  6. Brooks TM, Mittermeier RA, Mittermeier CG et al (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923. doi: 10.1046/j.1523-1739.2002.00530.x CrossRefGoogle Scholar
  7. Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16:242–248. doi: 10.1016/S0169-5347(01)02125-5 PubMedCrossRefGoogle Scholar
  8. Carwardine J, Rochester WA, Richardson KS et al (2007) Conservation planning with irreplaceability: does the method matter? Biodivers Conserv 16:245–258. doi: 10.1007/s10531-006-9055-4 CrossRefGoogle Scholar
  9. Ceballos G (2007) Conservation priorities for mammals in megadiverse Mexico: the efficiency of reserve networks. Ecol Appl 17:569–578PubMedCrossRefGoogle Scholar
  10. Cincotta RP, Wisnewski J, Engelman R (2000) Human population in biodiversity hotspots. Nature 404:990–992. doi: 10.1038/35010105 PubMedCrossRefGoogle Scholar
  11. Diniz-Filho JAF, Bini LM, Pinto MP et al (2007) Conservation biogeography of anurans in Brazilian Cerrado. Biodivers Conserv 16:997–1008. doi: 10.1007/s10531-006-9010-4 CrossRefGoogle Scholar
  12. Ferrier S, Pressey RL, Barret TW (2000) A new predictor of irreplaceability of areas for achieving conservation goals, its application to real-world planning, and a research agenda for further refinement. Biol Conserv 93:303–325. doi: 10.1016/S0006-3207(99)00149-4 CrossRefGoogle Scholar
  13. Gaston KJ, Pressey RL, Margules CR (2002) Persistence and vulnerability: retaining biodiversity in the landscape and in protected areas. J Biosci 27(suppl 2):361–384. doi: 10.1007/BF02704966 PubMedCrossRefGoogle Scholar
  14. Grelle CEV (2000) Aerografia de primatas endêmicos da Mata Atlântica Tese de Doutoramento Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  15. Grelle CEV, Fonseca GAB, Fonseca MT et al (1999) The question of scale in threat analysis: a case study with Brazilian mammals. Anim Conserv 2:149–152. doi: 10.1111/j.1469-1795.1999.tb00060.x CrossRefGoogle Scholar
  16. Grelle CEV, Alves MAS, Bergallo HG et al (2005) Prediction of threatened tetrapods based on the species-area relationship in Atlantic forest. J Zool (Lond) 265:359–364. doi: 10.1017/S0952836905006461 CrossRefGoogle Scholar
  17. Grelle CEV, Paglia AP, Silva HS (2006) Análise dos fatores de ameaça à extinção estudo de caso com mamíferos brasileiros. In: Rocha CFD, Bergallo HG, van Sluys M et al (eds) Biologia da conservação essências. RiMa, São CarlosGoogle Scholar
  18. IUCN (2007)The World Conservation Union. 2007 IUCN red list of threatened Species. http://www.iucnredlist.org. Cited on 02 October 2008
  19. Kobayashi S (1995) A plylogenetic study of titi monkeys, genus Callicebus, based on cranial measurements: i phyletic groups of Callicebus. Primates 36:101–120. doi: 10.1007/BF02381918 CrossRefGoogle Scholar
  20. Laurance WF (2007) Have we overstated the tropical biodiversity crisis? Trends Ecol Evol 22:65–70. doi: 10.1016/j.tree.2006.09.014 PubMedCrossRefGoogle Scholar
  21. Lawler JJ, White D, Master LL (2003) Integrating representation and vulnerability: two approaches for prioritizing areas for conservation. Ecol Appl 13:1762–1772. doi: 10.1890/02-5337 CrossRefGoogle Scholar
  22. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi: 10.1038/35012251 PubMedCrossRefGoogle Scholar
  23. Margules CR, Nicholls AO, Pressey RL (1988) Selecting networks of reserves to maximise biological diversity. Biol Conserv 43:63–76. doi: 10.1016/0006-3207(88)90078-X CrossRefGoogle Scholar
  24. Marinho-Filho J, Veríssimo EW (1997) The rediscovery of Callicebus personatus barbarabrownae in northeastern Brazil with a new western limit for its distribution. Primates 38:429–433. doi: 10.1007/BF02381883 CrossRefGoogle Scholar
  25. Meir E, Andelman S, Possingham HP (2004) Does conservation planning matter in a dynamic and uncertain world? Ecol Lett 7:615–622. doi: 10.1111/j.1461-0248.2004.00624.x CrossRefGoogle Scholar
  26. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  27. O’Dea N, Araújo MB, Whittaker RJ (2006) How well do Important Bird Areas represent species and minimize conservation conflict in the Tropical Andes? Divers Distrib 12:205–214. doi: 10.1111/j.1366-9516.2006.00235.x CrossRefGoogle Scholar
  28. Oliveira MM, Langguth A (2006) Rediscovery of marcgrave’s capuchin monkey and designation of a neotype for Simia flavia Schreber, 1774 (Primates, Cebidae). Bol Museu Nac 523:1–16Google Scholar
  29. Pinto LP, Bedê L, Paese A (2006) Mata Atlântica brasileira: os desafios para conservação da biodiversidade de um hotspot mundia. In: Rocha CFD, Bergallo HG, van Sluys M (eds) Biologia da conservação: essências. RiMa, São CarlosGoogle Scholar
  30. Pinto MP, Mathias PVC, Blamires D et al (2007) Selecting priority areas to conserve Psittacines in the Brazilian cerrado: minimizing human-conservation conflicts. Bird Conserv Int 17:13–22. doi: 10.1017/S0959270906000578 CrossRefGoogle Scholar
  31. Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New YorkGoogle Scholar
  32. Possingham HP, Wilson KA, Andelman SJ (2006) Protected areas: goals, limitations, and design. In: Groom MJ, Meffe GK, Carroll CR et al (eds) Principles of conservation biology. Sinauer Associates, SunderlandGoogle Scholar
  33. Pressey RL (1994) Ad hoc reservations: foward or backward steps in developing representative reserves systems? Conserv Biol 8:662–668. doi: 10.1046/j.1523-1739.1994.08030662.x CrossRefGoogle Scholar
  34. Pressey RL, Cowling RM (2001) Reserve selection algorithms and the real world. Conserv Biol 15:275–277. doi: 10.1046/j.1523-1739.2001.99541.x CrossRefGoogle Scholar
  35. Pressey RL, Humphries CJ, Margules CR et al (1993) Beyond opportunism: key principles for systematic reserve selection. Trends Ecol Evol 8:124–128. doi: 10.1016/0169-5347(93)90023-I CrossRefGoogle Scholar
  36. Pressey RL, Johnson IR, Wilson PD (1994) Shades of irreplaceability: towards a measure of the contribution of sites to a reservation goal. Biol Conserv 3:242–262Google Scholar
  37. Pressey RL, Cabeza M, Watts ME et al (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592PubMedCrossRefGoogle Scholar
  38. Rodrigues ASL, Andelman SJ, Bakarr ML et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643. doi: 10.1038/nature02422 PubMedCrossRefGoogle Scholar
  39. Rondinini C, Wilson KS, Boitani L et al (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol Lett 9:1136–1145. doi: 10.1111/j.1461-0248.2006.00970.x PubMedCrossRefGoogle Scholar
  40. Rylands AB, Fonseca GAB, Leite YL (1996) Primates of the Atlantic Forest: origin, distribution, endemism and communities. In: Norconk M, Rosenberger A, Garber P et al (eds) Adaptive radiations of neotropical primates. Plenum Press, New YorkGoogle Scholar
  41. Silva JMC, Casteleti CHM (2003) Status of biodiversity of the Atlantic Forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threat, and outlook. Island Press, WashigtonGoogle Scholar
  42. Silva Junior JS (2001) Especiação nos macacos-prego e caiararas, gênero Cebus Erxleben, 1777 (Primates, Cebidae) Tese de Doutoramento . Universidade Federal do , Rio de JaneiroGoogle Scholar
  43. Tognelli MF (2007) How well do protected areas represent the terrestrial mammal fauna of South America? In: Kelt DA, Lessa EP, Salazar-Bravo J (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, California, p 134Google Scholar
  44. Underwood EC, Shaw MR, Wilson KA et al (2008) Protecting biodiversity when money matters: maximizing return on investment. PLoS On 3:e1515. doi: 10.1371/journal.pone.0001515 Google Scholar
  45. Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23. doi: 10.1111/j.1366-9516.2005.00143.x CrossRefGoogle Scholar
  46. Williams PH, Moore JL, Toham AK et al (2003) Integrating biodiversity priorities with conflicting socio-economic values in the Guinean-Congolian forest region. Biodivers Conserv 12:1297–1320. doi: 10.1023/A:1023092100942 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Míriam Plaza Pinto
    • 1
  • Carlos Eduardo Viveiros Grelle
    • 2
  1. 1.Programa de Pós-Graduação em Ecologia, Laboratório de Vertebrados, Departamento de EcologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Vertebrados, Departamento de EcologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations