Biodiversity and Conservation

, Volume 17, Issue 3, pp 591–604 | Cite as

Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach

  • Christine Römermann
  • Oliver Tackenberg
  • Anne-Kathrin Jackel
  • Peter Poschlod
Original Paper


Due to ubiquitous eutrophication and fragmentation, many plant species are actually threatened in Europe. Most ecosystems face an overall nutrient input leading to changes in species composition. Fragmentation is effectively influencing species survival. We investigate if two different measures of species performance of 91 calcareous grassland species–rate of decline and rarity—are related to comparable traits and hence processes. On the one hand we expected that species rate of decline is mainly determined by the processes of eutrophication and fragmentation. On the other hand we hypothesized that the importance of site characteristics may overwhelm the effect of eutrophication and fragmentation for species rarity. Hence, we compared persistence traits responding to eutrophication, dispersal traits being related to fragmentation and ecological site factors for decreasing and increasing species and for rare and common species. The results suggest that increasing species had better means of long-distance dispersal and were more competitive than decreasing species. In contrast, there were hardly any differences in traits between rare and common species, but site characteristics were related to species rarity. Rare species were in the main those with ecological preferences for warm, dry, light and nutrient poor conditions. This study may represent a basis for the assessment of plant species threat. Applying the deduced knowledge about the life history of decreasing versus increasing species to habitat-scale approaches it is possible to predict which species may become threatened in the future simply from the combination of their trait values.


Eutrophication Fragmentation Life-history traits Plant species rarity Rate of decline 



We would like to acknowledge all members and contributors of the LEDA-traitbase ( for providing species trait data, especially J. Klimešová (data on clonal species) and D. Kunzmann (data on SLA). We thank all contributors of the floristic mapping of Germany and the German Phytodiversity Network (NetPhyD) for providing species distribution data. M. Bernhardt-Römermann gave useful comments on the manuscript. Research was supported by the European Commission (LEDA-project, EVR1-CT-2002-40022).

Supplementary material

10531_2007_9283_MOESM1_ESM.pdf (31 kb)
(PDF 31 kb)


  1. Bekker RM, Kwak MM (2005) Life history traits as predictors of plant rarity, with particular reference to hemiparasitic Orobanchaceae. Folia Geobot 2–3:231–242CrossRefGoogle Scholar
  2. Bernhardt M (2005) Reaktionen der Waldbodenvegetation auf erhöhte Stickstoffeinträge- Analyse und Vorhersage von Vegetationsveränderungen anhand von funktionellen Merkmalen. Diss Bot 397:1–121Google Scholar
  3. Bernhardt-Römermann M, Kirchner M, Kudernatsch T, Jakobi G, Fischer A (2006) Changed vegetation composition in coniferous forests near to motorways in Southern Germany: the effects of traffic-born pollution. Env Poll 143:572–581CrossRefGoogle Scholar
  4. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738CrossRefGoogle Scholar
  5. Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle and Meyer, UTB, WiesbadenGoogle Scholar
  6. Bonn S, Poschlod P, Tackenberg O (2000) “Diasporus”—a database for diaspore dispersal-concept and applications in case studies for risk assessment. ZÖN 9:89–97Google Scholar
  7. Couvreur M, Vandenberghe B, Verheyen K, Hermy M (2004) An experimental assessment of seed adhesivity on animal furs. SSR 14:147–159CrossRefGoogle Scholar
  8. Diaz S, Noy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38:497–508CrossRefGoogle Scholar
  9. Ehrlén J, Van Groenendal JM (1998) The trade-off between dispersability and longevity—an important aspect of plant species diversity. Appl Veg Sc 1:29–36CrossRefGoogle Scholar
  10. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–262Google Scholar
  11. Eriksson A, Eriksson O (1997) Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank. Nord J Bot 17:469–480Google Scholar
  12. Eriksson O, Jakobsson A (1998) Abundance, distribution and life histories of grassland plants: a comparative study of 81 species. J Ecol 86:922–933CrossRefGoogle Scholar
  13. Eriksson O, Jakobsson A (1999) Recruitment trade-offs and the evolution of dispersal mechanisms in plants. Evol Ecol 13:411–423CrossRefGoogle Scholar
  14. Fiedler PL, Ahouse JJ (1992) Hierarchies of cause: toward an understanding of rarity in vascular plant species. In: Fiedler PL, Jain SK (eds) Conservation biology—the theory and practice of nature conservation, preservation and management. Chapman & Hall, New York, LondonGoogle Scholar
  15. Fischer M (1998) Über die Ursache der Gefährdung lokaler Pflanzenpopulationen. Bauhinia 12:9–21Google Scholar
  16. Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737CrossRefGoogle Scholar
  17. Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222CrossRefGoogle Scholar
  18. Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorous gradients. J Ecol 88:964–977CrossRefGoogle Scholar
  19. Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243CrossRefGoogle Scholar
  20. Graae BJ (2002) The role of epizoochorous seed dispersal of forest plant species in a fragmented landscape. SSR 12:113–121Google Scholar
  21. Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester, New York, Brisbane, TorontoGoogle Scholar
  22. Jensen K, Gutekunst K (2003) Effects of litter on establishment of grassland plant species: the role of seed size and successional status. BAE 4:579–587Google Scholar
  23. Kahmen S (2004) Plant trait responses to grassland management and succession. Diss Bot 328:1–122Google Scholar
  24. Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32CrossRefGoogle Scholar
  25. Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003) Life-history traits of the Northwest European Flora: the LEDA database. J Veg Sci 14:611–614CrossRefGoogle Scholar
  26. Knevel IC, Bekker RM, Kunzmann D, Stadler M, Thompson K (2005) The LEDA traitbase collecting and measuring standards of life-history traits of the Northwest European flora. LEDA Traitbase project online publication. Cited 5 March 2007Google Scholar
  27. Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn- und Blütenpflanzen Deutschlands. Schrreihe Vegkd 29:299–444Google Scholar
  28. Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269CrossRefGoogle Scholar
  29. Lavergne S, Thuiller W, Molina J, Debussche M (2005) Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region. J Biogeogr 32:799–811CrossRefGoogle Scholar
  30. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  31. Lavorel S, McIntyre S, Grigulis K (1999) Plant response to disturbance in a Mediterranean grassland: how many functional groups? J Veg Sci 10:661–672CrossRefGoogle Scholar
  32. Matlack GR (2005) Slow plants in a fast forest: local dispersal as a predictor of species frequencies in a dynamic landscape. J Ecol 93:50–59CrossRefGoogle Scholar
  33. McCune B, Mefford MJ (1999) Pc-Ord-multivariate analysis of ecological data. MjM Software, Gleneden BeachGoogle Scholar
  34. McIntyre S, Diaz S, Lavorel S, Cramer W (1999) Plant functional types and disturbance dynamics—introduction. J Veg Sci 10:604–608CrossRefGoogle Scholar
  35. Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383CrossRefGoogle Scholar
  36. Oberdorfer E (1978) Süddeutsche Pflanzengesellschaften. Gustav Fischer Verlag, StuttgartGoogle Scholar
  37. Olesen JM, Jain SK (1994) Fragmented plant populations and their lost interactions. In: Loeschke V, Tomiuk J, Jain SK (eds) Conservation Genetics. Birkhäuser Verlag, BaselGoogle Scholar
  38. Pakeman RJ (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J Ecol 92:893–905CrossRefGoogle Scholar
  39. Poschlod P, Bonn S (1998) Changing dispersal processes in central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitats? Acta Bot Neerl 47:27–44Google Scholar
  40. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands-lessons from the distant and recent past. Biol Conserv 104:361–376CrossRefGoogle Scholar
  41. Poschlod P, Kiefer S, Tränkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–90CrossRefGoogle Scholar
  42. Poschlod P, Kleyer M, Tackenberg O (2000) Databases on life history traits as a tool for risk assessment in plant species. ZÖN 9:3–18Google Scholar
  43. Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobot Phytotaxon 38:263–271CrossRefGoogle Scholar
  44. Poschlod P, Tackenberg O, Bonn S (2004). Plant dispersal potential and its relation to species frequency and coexistence. In: van der Maarel E (ed) Vegetation Ecology. Blackwell, LondonGoogle Scholar
  45. Pywell RF, Bullock JM, Roy DB, Warman L, Walker KJ, Rothery P (2003) Plant traits as predictors of performance in ecological restoration. J Appl Ecol 40:65–77CrossRefGoogle Scholar
  46. Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, ChichesterGoogle Scholar
  47. Ringler A (1995) Einführung-Ziele der Landschaftspflege in Bayern. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen und Bayerische Akademie für Naturschutz und Landschaftspflege, MünchenGoogle Scholar
  48. Römermann C (2006) Patterns and processes of plant species frequency and life-history traits. Dissertation Botanicae 402, 117pGoogle Scholar
  49. Römermann C, Tackenberg O, Poschlod P (2005a) How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110:219–30CrossRefGoogle Scholar
  50. Römermann C, Tackenberg O, Poschlod P (2005b) Dispersability traits. In: Knevel K, Bekker RK, Kurtmann D, Stadler M, Thompson K (eds) The LEDA traitbase collecting and measuring standards of life-history traits of the North West European flora.
  51. Römermann C, Tackenberg O, Scheuerer M, May R, Poschlod P (2007) Predicting habitat distribution and frequency from plant species co-occurrence data. J Biogeogr 34:1041–1052Google Scholar
  52. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  53. Smart SM, Bunce RGH, Marrs R, LeDuc M, Firbank LG, Maskell LC, Scott WA, Thompson K, Walker KJ (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: Tests of hypothesised changes in trait representation. Biol Conserv 124:355–371CrossRefGoogle Scholar
  54. Tackenberg O, Römermann C, Poschlod P, Thompson K (2006) What does diaspore morphology tell us about external animal dispersal? Evidence from standardized experiments measuring seed retention on animal coats. BAE 7:45–58Google Scholar
  55. Thompson K (1994) Predicting the fate of temperate species in response to human disturbance and global change. In: Boyle TJB, Boyle CEB (eds) Biodiversity, temperate ecosystems and global change. Springer, BerlinGoogle Scholar
  56. Walker KJ, Preston CD (2006) Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers Conserv 15:1913–1942CrossRefGoogle Scholar
  57. Welk E (2002) Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefäßpflanzen Deutschlands. Schrreihe Vegkd 37:1–337Google Scholar
  58. Weller SG (1994) The relationship of rarity to plant reproductive biology. In: Bowles ML, Whelan CJ (ed) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, ChicagoGoogle Scholar
  59. Westoby M (1998) A leaf-height-seed LHS. Plant ecology strategy scheme. Plant Soil 199:213–227CrossRefGoogle Scholar
  60. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159CrossRefGoogle Scholar
  61. Willems JH, Peet RK, Bik L (1993) Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. J Veg Sci 4:203–212CrossRefGoogle Scholar
  62. Williams NSG, Morgan JW, McDonnell MJ, McCarthy MA (2005) Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J Ecol 93:1203–1213CrossRefGoogle Scholar
  63. Willson MF (1993) Dispersal mode, seed shadows, and colonization patterns. Vegetatio 107/108:261–280Google Scholar
  64. Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Christine Römermann
    • 1
    • 2
  • Oliver Tackenberg
    • 3
  • Anne-Kathrin Jackel
    • 1
  • Peter Poschlod
    • 1
  1. 1.Institute of BotanyUniversity of RegensburgRegensburgGermany
  2. 2.Institute of Physical GeographyUniversity of FrankfurtFrankfurtGermany
  3. 3.Institute of Ecology, Evolution & DiversityUniversity of FrankfurtFrankfurtGermany

Personalised recommendations