Biodiversity and Conservation

, Volume 17, Issue 2, pp 329–343 | Cite as

Diversity and biogeography of testate amoebae

  • Humphrey Graham Smith
  • Anatoly Bobrov
  • Enrique Lara
Original Paper


Testate amoebae are amoeboid protists inhabiting a test (shell). They occur globally in soils, wetlands and freshwater, especially peats and mosses. They are of ancient origin, dating from at least the Mesozoic, with possible ancestors as old as the Neoproterozoic. Approximately 2,000 taxa have been described—a number which could easily rise to 4,000 with comprehensive recording. Whilst many protists appear to be cosmopolitan as morphospecies, some of the larger testate species (exceeding 100 μm) have long been considered, controversially, to be geographically restricted. Definitive conclusions have often been confounded by gaps in distributional data and misidentification. Recent increases in recording from previously little known regions, and the rise of molecular taxonomy, have started to resolve outstanding issues—processes still far from complete. Accordingly, biogeographical studies have concentrated on “flagship” species—those which can be identified with certainty and are sufficiently recorded to determine their ecological ranges. Apodera vas (Certes) has been proved to be largely restricted to the Gondwanaland continents and sub-Antarctic islands, but absent from the Holartic despite the availability of much suitable habitat. An early analysis postulated a Mesozoic origin of the species and a distribution influenced by continental drift. Recent molecular evidence could imply a later origin. Either way, its current distribution is clearly influenced by the pattern of global wind currents and lack of lowland tropical habitat. By contrast a “Gondwana-tropical” group of species appears to be restricted to latitudes unaffected by glaciation. Instances of local endemism, such as restriction to a single island, are also known, which await molecular evidence for substantiation.


Biogeography Cosmopolitanism Diversity Ecology Endemism Flagship species Fossil testates Testate amoebae 



The authors wish to extend grateful thanks to Wilhelm Foissner, Thierry Heger, Edward Mitchell and David Wilkinson, whose valuable comments and guidance greatly assisted us in the preparation of the manuscript.


  1. Ashmole P, Ashmole M (2002) St. Helena and Ascension Islands: a natural history. Anthony Nelson, Oswestry, UKGoogle Scholar
  2. Balik V, Song B (2000) Benthic freshwater testate amoebae assemblages (Protozoa: Rhizopoda) from Lake Dongting, People’s Republic of China, with description of a new species from genus Collaripyxidia. Acta Protozool 39:149–156Google Scholar
  3. Beyens L, Chardez D (1995) An annotated list of testate amoebae observed in the Arctic between longitudes 27 °E and 168 °W. Arch Protistenk 146:219–233Google Scholar
  4. Beyens L, Chardez D (1997) New testate amoeba taxa from the polar regions. Acta Protozool 36:137–142Google Scholar
  5. Beyens L, Chardez D, Baere D et al (1995) The aquatic testate fauna of the Stromness Bay area, South Georgia. Antarct Sci 7:3–8CrossRefGoogle Scholar
  6. Beyens L, Meisterfeld R (2002) Protozoa: testate amoebae. In: Smol JP, Birks JB, Last WM et al (eds) Tracking environmental change using lake sediments. Springer, Netherlands, pp 121–153CrossRefGoogle Scholar
  7. Bobrov AA (2001) Finding of the tropical group testate amoebae (Protozoa: Testacea) at the Far East (Sikhote Alin Reserve). Biol Bull 28:401–417CrossRefGoogle Scholar
  8. Bobrov A, Mazei Y (2004) Morphological variability of testate amoebae (Rhizopoda: Testacealobosea Testaceafilosea) in natural populations. Acta Protozool 43:133–146Google Scholar
  9. Bobrov AA, Siegert Ch, Andreev AA et al (2003) Testaceans (Protozoa: Testacea) in Quaternary permafrost sediments of the Bykovsky Peninsula, Arctic Yakutia. Biol Bull 30:191–206CrossRefGoogle Scholar
  10. Bobrov AA, Andreev AA, Schirrmeister L et al (2004) Testate amoebae (Protozoa: Testacealobosea and Testaceafilosea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia. Palaeogeogr Palaeosediment Palaeoecol 209:165–181CrossRefGoogle Scholar
  11. Boeuf O, Gilbert D (1997) Présence de Thécamoebiens du genre Trinema au Pliocène supérieur, découverte à Chilhac (Haute-Loire, France). C r hebd Séanc Acad Sci, Paris 325:623–627Google Scholar
  12. Bonnet L (1969) Aspects généraux du peuplement thécamoebien édaphique d’Afrique intertropicale. Pub Cult Co Diam Ang 81:136–176Google Scholar
  13. Bonnet L (1977) Le peuplement thécamoebien des sols du Népal et son intérêt biogéographique. Bull Soc Hist nat Toulouse 113:331–348Google Scholar
  14. Bonnet L (1978) Faunistique et biogéographie des Thécamoebiens IV: Thécamboebiens des sols du massif du Nimba (Côte d’Ivorie). Bull Soc Hist nat Toulouse 114:59–64Google Scholar
  15. Bonnet L (1980) Faunistique et biogéographie des Thécamoebiens. VI. Thécamoebiens de quelques sols des Philippines. Bull Soc Hist nat Toulouse 116:277–282Google Scholar
  16. Bonnet L (1981) Thécamoebiens (Rhizopoda Testacea). In: Travé J (ed) Biologie des sols, vol 48. CNFRA, pp 23–32Google Scholar
  17. Bonnet L (1983) Interet biogéographie et paleogéographie des Thécamoebiens des sols. Annls Stn limnol Besse 17:298–334Google Scholar
  18. Bonnet L, Gomez-Sanchez M-S (1994) Thécamoebiens édaphiques (Rhizopoda, Arcellinida) à distribution géographique restreinte en Asturies et dans le sud-ouest de la France. Bull Soc Hist nat Toulouse 130:7–14Google Scholar
  19. Booth R (2002) Testate amoebae as palaeoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28:329–348CrossRefGoogle Scholar
  20. Cailleux A (1978) Reparation géographique des espèces de Thécamoebiens. C R Soc Biogeogr 472:29–39Google Scholar
  21. Cash J, Wailes GH, Hopkinson J (1919) The British freshwater rhizopoda and heliozoa. IV supplement to the rhizopoda. The Ray Society, LondonGoogle Scholar
  22. Certes A (1891) Protozoaires. In: Mission scientifique du Cap Horn 1882–1883, Zoology 6:1–53Google Scholar
  23. Cavalier-Smith T (2004) Only six kingdoms of life. Proc R Soc London 271:1251–1262CrossRefGoogle Scholar
  24. Charman DJ (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J Roy Soc NZ 27:465–483Google Scholar
  25. Corsetti FA, Awramik SM, Pierce D (2003) A complex microbiota from snowball Earth times: Microfossils from Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proc Nat Acad Sci USA 100:4399–4404PubMedCrossRefGoogle Scholar
  26. Corsetti FA, Olcott AN, Bakemans C (2006) The biotic response to Neoproterozoic snowball Earth. Paleogeogr Paleoclim Paleoecol 232:14–130CrossRefGoogle Scholar
  27. Coupe SJ, Smith HG, Newman AP et al (2003) Biodegradation and microbial diversity within permeable pavements. Europ J Protistol 39:495–498CrossRefGoogle Scholar
  28. Cowling AJ (1983) Respiratory studies on testate amoebae from the maritime Antarctic. In: Lebrun P, André HM, de Medts A et al (eds) New trends in soil biology. Proc 8th Int Coll Soil Zoology, Louvain-la—Neuve, Belgium, p 627Google Scholar
  29. Decloitre L (1953) Recherches sue les Rhizopodes thécamoebiens de l’A O F. Mem Ins Fr Afr Noire 31:1–249Google Scholar
  30. Decloitre L (1964) Thécamoebiens de la XIIème Expédition Antarctique Française en Terre Adélie TAAF, Exp Pol Fr ParisGoogle Scholar
  31. Decloitre L (1965) Contribution à la faune du Congo (Brazzaville). Mission A Dexarpentries et A Villiers III Rhizopodes Thécamoebiens. Bull Inst Fr Afr Noire 27:165–184Google Scholar
  32. Decloitre L (1985) Thécamoebologie Française. Ann Soc Sc Nat Arch Toulon et du Var 37:117–122Google Scholar
  33. Deflandre G (1928) Le genre Arcella Ehrenberg. Arch Protistenk 64:152–287Google Scholar
  34. Deflandre G (1936) Etude monographique sur le genre Nebela Leidy. Ann Protistol 5:201–322Google Scholar
  35. Esteban GF, Clarke KJ, Olmo JL et al (2006) Soil protozoa—An intensive study of population dynamics and community structure in an upland grassland. Appl Soil Ecol 33:137–151CrossRefGoogle Scholar
  36. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063PubMedCrossRefGoogle Scholar
  37. Finlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–244PubMedCrossRefGoogle Scholar
  38. Finlay BJ, Esteban GF, Clarke KJ et al (2001) Biodiversity of terrestrial protozoa appears homogenous across local and global spatial scales. Protist 152:355–366PubMedCrossRefGoogle Scholar
  39. Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasising protists. Acta Protozool 45:111–136Google Scholar
  40. Foissner W, Schiller W (2001) Stable for 15 million years: scanning electron microscope investigation of Miocene euglyphid thecamoebians from Germany, with description of the new genus Scutiglypha. Eur J Protistol 37:167–180CrossRefGoogle Scholar
  41. Gautier-Lièvre L (1954) Les genres Nebela, Paraquadrula et Pseudonebela (Rhizopodes testacés) en Afrique. Arch Protistenk 103:241–370Google Scholar
  42. Gericke JMS (1932) On two species of Nebela found in South Africa. South Afr J Sci Johannesburg 29:624–626Google Scholar
  43. Gilbert D, Mitchell EAD, Amblard C et al (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major—bohemica—collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozool 42:99–104Google Scholar
  44. Golemansky V (1963) Matériaux sur la faune rhizopodique de Guinnée. Thécamoebiens du massif du Foutadjalon. Rech Africanes, NS 1:39–54Google Scholar
  45. Grospietsch T (1958) Beitrag zur Rhizopodenfauna Deutschlands: Die Thekamöben der Rhön. Hydrobiologia 10:305–322CrossRefGoogle Scholar
  46. Grospietsch T (1971) Beitrag zur Ökologie der Testaceen Rhizopoden von Marion Island. In: Zinderen Bakker EM van, Winterbottom JM, Dyer RA (eds) Marion and Prince Edward Islands, report on the South African biological and geological expedition 1965–1966. AA Balkema, Cape Town, pp 411–423Google Scholar
  47. Heinis F (1914) Die Moosfauna Columbiens. In: Fuhrmann O, Mayor E (eds) Voyage d’exploration scientifique en Colombie. Mem Soc Neuchateloise Sci Nat 5:675–730Google Scholar
  48. Hoogenraad HR, Groot AA de (1940) Moosbewohnende Thekamoebe Rhizopoden von Java und Sumatra. Treubia 17:209–259Google Scholar
  49. Hoogenraad HR, Groot AA de (1979) Die geographische Verbreitung der Süßwasser Rhizopoden. Hydrobiol Bull (Amsterdam) 13:152–171CrossRefGoogle Scholar
  50. Jennings HS (1916) Heredity, variation and the results of selection in the uniparental reproduction of Difflugia corona. Genetics 1:407–534PubMedGoogle Scholar
  51. Jung W (1936) Thecamöben ursprünglicher lebender deutscher Hochmoore. Abh Landesmus Westf 7:1–87Google Scholar
  52. Jung W (1942a) Illustrierte Thekamöben – Bestimmungstabellan. I. Die Systematik der Nebelinen. Arch Protistenk 95:357–390Google Scholar
  53. Jung W (1942b) Südchilenische Thekamöben. Arch Protistenk 95:253–356Google Scholar
  54. Korganova GA (1994) Testate amoebae (Protozoa) in island ecosystems. In: Animal populations of islands of south-west Oceania. Nauka, Moscow, pp 184–209Google Scholar
  55. Laminger H (1973a) Die Testaceen (Protozoa, Rhizopoda) einiger Hochgebirgsgewässer von Mexiko, Costa Rica und Guatemala. Int Rev Ges Hydrobiol 58:273–305CrossRefGoogle Scholar
  56. Laminger H (1973b) Die Testaceen in der Umgebung der Station Büschelbach (Spessart/BRD). Hydrobiologia 41:501–513CrossRefGoogle Scholar
  57. Lara E, Heger TJ, Mitchell EAD et al (2007a) SSU rRNA reveals a sequential increase in shell complexity among the Euglyphid testate amoebae (Rhizaria: Euglyphida). Protist 158:229–237PubMedCrossRefGoogle Scholar
  58. Lara E, Heger TJ, Ekelund F et al (2007b) Ribosomal RNA genes challenge the monophyly of Nebela and Hyalosphenia (Arcellinida: Hyalospheniidae) (submitted)Google Scholar
  59. Laybourn J, Whymant L (1980) Effect of diet on reproductive rate in Arcella vulgaris Ehrenberg (Sarcodina: Testacida). Oecologia 45:282–284CrossRefGoogle Scholar
  60. Longet D, Burki F, Flakowski J et al (2004) Multigene evidence for close evolutionary relations between Gromia and Foraminifera. Acta Protozool 43:303–311Google Scholar
  61. McDowall RM (2005) Falkland Islands biogeography: converging trajectories in the South Atlantic Ocean. J Biogeog 32:49–62CrossRefGoogle Scholar
  62. Meisterfeld R (2002a) Order Arcellinida Kent, 1880. In: Lee JJ, Leedale GE, Bradbury P (eds) An illustrated guide to the protozoa, 2nd edn. Allen Press, Lawrence, Kansas, pp 827–860Google Scholar
  63. Meisterfeld R (2002b) Testate amoebae with filopodia. In: Lee JJ, Leedale GE, Bradbury P (eds) An illustrated guide to the protozoa, 2nd edn. Allen Press, Lawrence, Kansas, pp 1054–1084Google Scholar
  64. Meisterfeld R, Tan L-W (1998) First records of testate amoebae from Mount Buffalo National Park, Victoria. Vic Natural 115:231–238Google Scholar
  65. Mitchell EAD, Meisterfeld R (2005) Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156:263–267PubMedCrossRefGoogle Scholar
  66. Mitchell EAD, Charman DJ, Warner BG (2007) Testate amoebae (Protozoa) in ecological and paleoecological studies of wetlands: past, present and future. Biodiv Conserv (in press)Google Scholar
  67. Nicholls KH (2003) Corythionella golemanski sp.n. a new freshwater, filose, testate rhizopod. Acta Protozool 42:75–80Google Scholar
  68. Nicholls KH (2005) Cyclopyxis acmodata sp.n. and Arcella formosa n.sp.: two new species of testate rhizopods (Arcellinida, Protozoa) from threatened wetlands in Ontario, Canada. Can Field Natur 119:403–411Google Scholar
  69. Nikolaev SI, Mitchell EAD, Petrov NB et al (2005) The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa. Protist 156:191–202PubMedCrossRefGoogle Scholar
  70. Ogden CG (1984) Shell structure of some testate amoebae from Britain (Protozoa, Rhizopoda). J Nat Hist 18:341–361CrossRefGoogle Scholar
  71. Ogden CG, Hedley RH (1980) An atlas of freshwater testate amoebae. British Museum (Natural History), OUP, OxfordGoogle Scholar
  72. Oye P van (1956) On the Thecamoeban fauna of New Zealand with description of four new species and biogeografical discussion. Hydrobiologia 8:16–37CrossRefGoogle Scholar
  73. Oye P van (1960) On the Biogeography of Rhizopods and Desmids. Scientiae naturalis studia et opuscula in honorem septuagenarii W Weisbach, 61–78Google Scholar
  74. Penard E (1902) Faune rhizopodique du bassin du leman. Kündig, GenèveGoogle Scholar
  75. Penard E (1903) Notice sur les Rhizopodes du Spitzbergen. Arch Protistenk 2:238–282Google Scholar
  76. Penard E (1938) Les infiniment petits dans leurs manifestations vitals. Georg & Cie, GenèveGoogle Scholar
  77. Poinar GO, Waggoner BM, Bauer U-C (1993) Terrestrial soft-bodied protists and other organisms in Triassic amber. Science 259:222–224PubMedCrossRefGoogle Scholar
  78. Porter SM, Meisterfeld R, Knoll AH (2003) Vase-shaped microfossils from the Neoproterzoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J Palaeontol 77:409–429CrossRefGoogle Scholar
  79. Richters F. (1908) Beitrag zur Kenntnis der Moosfauna Australiens und der Inseln des Pazifischen Ozeans. Zool Jahrb 26:196–213Google Scholar
  80. Schmidt AR, Schönborn W, Schäfer U (2004) Diverse fossil amoebae in German Mesozoic amber. Palaeontology 47:185–197CrossRefGoogle Scholar
  81. Schönborn W (1966) Beschalte Amöben (Testaceen). Ziemsen, Wittenberg-LutherstadtGoogle Scholar
  82. Schönborn W, Dörfelt H, Foissner W et al (1999) A fossilized microcenosis in Triassic amber. J Eukaryot Microbiol 46:571–584CrossRefGoogle Scholar
  83. Schroeter D (2001) Structure and function of decomposer food webs of forests along a European North-South-transect with special focus on testate amoebae (Protozoa). PhD-thesis, Department of Animal Ecology, University of GiessenGoogle Scholar
  84. Smith HG (1973) The temperature relations and bi-polar biogeography of the ciliate genus Colpoda. Bull Br Antarct Surv 37:7–13Google Scholar
  85. Smith HG (1978) Distribution and ecology of terrestrial protozoa of sub-Antarctic and maritime Antarctic islands. Sci Rep Br Antarct Surv 95:1–104Google Scholar
  86. Smith HG (1982) The terrestrial protozoan fauna of South Georgia. Pol Biol 1:173–179CrossRefGoogle Scholar
  87. Smith HG (1985) The colonization of volcanic tephra on Deception Island by protozoa: long-term trends. Bull Br Antarct Surv 66:19–33Google Scholar
  88. Smith HG (1996) Diversity of Antarctic terrestrial protozoa. Biodiv Conserv 5:1379–1394CrossRefGoogle Scholar
  89. Smith HG, Wilkinson DM (1987) Biogeography of testate rhizopods in the southern temperate and Antarctic zones. In: Trehen P (ed) 2eme Colloque sur les ecosystemes terrestres subantarctiques Paimpont, C N F R A 58:83–96Google Scholar
  90. Smith HG, Wilkinson DM (2007) Not all free-living microorganisms have cosmopolitan distributions – the case of Nebela (Apodera) vas Certes. J Biogeog 34:1822–1831CrossRefGoogle Scholar
  91. Stout JD (1969) Significance of biogeography in ecology of soil habiting Protozoa. In: Progress in protozoology, abstracts of III international congress of protozoology, Nauka. Leningrad, pp 212–213Google Scholar
  92. Todorov M (2001) Testate amoebae (Protozoa: Rhizopoda) in soil and litter of beech forests (Fagus sylvatica L.) from Bulgaria. Acta Zool Bulg 53:19–37Google Scholar
  93. Todorov M (2002) Morphology, biometry and ecology of Nebela bigibbosa Penard 1890 (Protozoa: Rhizopoda). Acta Protozool 41:239–244Google Scholar
  94. Todorov M, Golemansky V (1999) Planhoogenraadia bonneti sp.n. and Centropyxis thailandica sp.n. (Rhizopoda: Testacea), two new testaceans from Thailand. Acta Protozool 38:255–261Google Scholar
  95. Tyler PA (1996) Endemism in freshwater algae with special reference to the Australian region. Hydrobiologia 336:1–9Google Scholar
  96. Vincke S, Gremmen N, Beyens L et al (2004) The moss-dwelling testacean fauna of Île de la Possession. Pol Biol 27:753–766CrossRefGoogle Scholar
  97. Vincke S, Van der Vijver B, Gremmen N et al (2006a) The moss-dwelling testacean fauna of Strømness Bay (South Georgia). Acta Protozool 45:65–75Google Scholar
  98. Vincke S, Van der Vijver B, Nijs I et al (2006b) Changes in the testacean community structure along small soil profiles. Acta Protozool 45:395–406Google Scholar
  99. Vucetich MC (1972) Tres nuevas tecamebas muscicolas para la Argentina (Rhizopoda Testacea). Neotropica 18:126–128Google Scholar
  100. Vucetich MC (1978) Commentarios sobre le genero Certesella Loeblich & Tappan, 1961 y estudio de la estereo ultraestructura tecal de tres especies austroamericanas (Rhizopoda: Testaceolobosa). Obra del Centenario del Museo de la Plata 6:305–313Google Scholar
  101. Waggoner BM (1996) Bacteria and protists from Middle Cretaceous amber of Ellsworth County, Kansas. PaleoBios 17:20–26Google Scholar
  102. Wanner M (1999) A review of the variability of testate amoebae: methodological approaches, environmental influence and taxonomic implications. Acta Protozool 38:15–29Google Scholar
  103. Wanner M, Meisterfeld R (1994) Effect of some environmental factors on the shell morphology of testate amoebae (Rhizopoda, Protozoa). Eur J Protistol 30:91–195Google Scholar
  104. Wanner M, Dunger W (2002) Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. Eur J Soil Biol 38:137–143CrossRefGoogle Scholar
  105. Wanner M, Xylander WER (2005) Biodiversity development of terrestrial testate amoebae: is there any succession at all? Biol Fertil Soils 41:428–438CrossRefGoogle Scholar
  106. Wilkinson DM (1990) Glacial refugia in South Georgia? Protozoan evidence. Quaternary Newsl 62:12–13Google Scholar
  107. Wilkinson DM (2001) What is the upper size limit for cosmopolitan distribution in free-living microorganisms? J Biogeography 28:285–291CrossRefGoogle Scholar
  108. Wilkinson DM, Smith HG (2006) An initial account of the terrestrial protozoa of Ascension Island. Acta Protozool 45:407–413Google Scholar
  109. Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene 8:261–273CrossRefGoogle Scholar
  110. Wylezich C, Meisterfeld R, Michel R et al (2001) Molecular phylogeny of amoebae. Zoology 104(Suppl IV):72Google Scholar
  111. Yang J, Beyens L, Shen Y et al (2004) Redescription of Difflugia tuberspinifera Hu, Shen Gu et Gong 1997 (Protozoa: Rhizopoda: Arcellinida: Difflugiidae) from China. Acta Protozool 43:281–289Google Scholar
  112. Yang J, Shen Y (2005) Morphology, biometry and distribution of Difflugia biwae Kawamura 1918 (Protozoa: Rhizopoda). Acta Protozool 44:103–111Google Scholar
  113. Yang J, Meisterfeld R, Zhang W et al (2005a) Difflugia mulanensis nov.spec., a freshwater testate amoeba from Lake Mulan, China. Eur J Protistol 41:269–276CrossRefGoogle Scholar
  114. Yang J, Zhang W, Feng W et al (2005b) Geographical distribution pf testate amoebae from northwestern Yunnan and their relationship with climate. Hydrobiology 559:297–304CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Humphrey Graham Smith
    • 1
  • Anatoly Bobrov
    • 2
  • Enrique Lara
    • 3
  1. 1.Environmental SciencesCoventry UniversityCoventryUK
  2. 2.Faculty of Soil ScienceMoscow State UniversityMoscowRussia
  3. 3.Wetlands Research GroupSwiss Federal Research Institute WSLEcublensSwitzerland

Personalised recommendations