Biodiversity and Conservation

, Volume 16, Issue 11, pp 3067–3081 | Cite as

Habitat models for a riparian carabid beetle: their validity and applicability in the evaluation of river bank management

  • Meike Kleinwächter
  • Thomas Rickfelder
Original Paper


In order to assess the management success of river rehabilitation measurements it is necessary to have representative target species and objective statistical methods. In this study we, tested the validity of habitat suitability models for the riparian carabid beetle Bembidion velox in the evaluation of river bank management along the River Elbe, Germany. On the basis of seven independent data sets from different sites and years we have proven the robustness of logistic regression models with respect to their explanatory and predictive power and their applicability in the field. All models had robust explanatory power and described a strong association of B. velox with semi-terrestrial sandy open soil habitats. Transfers of model results for adult beetles to their larvae and vice versa were highly significant with “sand content” and “stem distance” as the main habitat factors for both life stages. To broaden the local explanatory power towards general predictions we performed model cross-validation in space and time. Spatial transfers produced models with excellent discrimination properties, measured by Area Under Curve (AUC) values of Receiver Operating Characteristics (ROC) plots, independent of sampling designs and trapping methodology. However, the applicability of habitat models for B. velox is defined by the validity period, as the availability of suitable habitats for this species is highly temporally variable and dependent on water level. Model transfers between species also demonstrated that the chosen target species is representative for carabids with similar distribution patterns, as the single species model had high predictive power for the occurrence of a multi-species carabid group.


AUC Bembidion velox Carabid larvae Habitat models Multi-species group River banks Temporal and spatial model transfer 



We would like to thank Aletta Bonn, Otto Larink, Andrea Matern, Boris Schröder and Dagmar Söndgerath for valuable comments on the manuscript and especially Boris Schröder for statistical advice. Linda Froome-Döring kindly corrected the English. Olaf Borkowsky and Ulrich Schmalhorst determined the soil texture and recorded the vegetation structure parameters. Funding for this study was provided within the framework of the two projects “Ecological indices of carabids in the Elbe floodplains” (German Federal Ministry of Education and Research, grant number 0339592) and “Ecological improvement of groynes in the River Elbe” (German Federal Institute of Hydrology, project U4/353.23/3861).


  1. Adis J, Junk WJ (2002) Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshw Biol 47:711–731CrossRefGoogle Scholar
  2. AG Boden (Arbeitsgruppe Bodenkunde) (1994) Bodenkundliche Kartieranleitung. 4. Aufl. Bundesanstalt f. Geowissenschaften u. Rohstoffe und Geolog. Landesämtern in d. Bundesrepublik Deutschland, Stuttgart, 394 ppGoogle Scholar
  3. Andersen J (1978) The influence of the substratum on the habitat selection of Bembidiini (Col., Carabidae). Norw J Ent 2:119–138Google Scholar
  4. Andersen J (1997) Habitat distribution of riparian species of Bembidiini (Col., Carabidae) in South and Central Norway. Fauna Norv Ser B 44:11–25Google Scholar
  5. Assmuth T, Bohle H-W (2000) Die Carabidozönose in Buhnenfeldern der Mittelelbe und deren Abhängigkeit von Umweltfaktoren. In: Deutsche Gesellschaft für Limnologie (ed) Tagungsber, Rostock 1999. pp 428–433Google Scholar
  6. Barndt D, Brase S, Glauche M, Kegel B, Platen R, Winkelmann H (1991) Die Laufkäferfauna von Berlin (West)–mit Kennzeichnung und Auswertung der verschollenen und gefährdeten Arten (Rote Liste 3. Fassung). Landschaftsentw u Umweltf S 6:243–275Google Scholar
  7. Bonn A, Kleinwächter M (1999) Microhabitat distribution of spider and ground beetle assemblages (Araneae, Carabidae) on frequently inundated river banks of the River Elbe. Z Ökologie u Naturschutz 8:109–123Google Scholar
  8. Bonn A, Schröder B (2001) Habitat models and their transfer for single and multi species groups: a case study of carabids in an alluvial forest. Ecography 24:483–496CrossRefGoogle Scholar
  9. Bonn A, Ziesche T (2000) Influence of river bank management (groyne restoration, boulder embankments) on the ground beetle fauna at the Elbe river margins. Natursch Landschaftspl 8:242–249Google Scholar
  10. Boscani A, Franceschini A, Maiolini B (2000) River ecotones: carabid beetles as a tool for quality. Hydrobiologia 422/423:173–182CrossRefGoogle Scholar
  11. Bräunicke M, Trautner J (1999) Die Ahlenläufer-Arten der Bembidion-Untergattungen Bracteon und Odontium. Verbreitung, Bestandssituation, Habitate und Gefährdung charakteristischer Flußaue-Arten in Deutschland. Angwdt Carab Suppl 1:79–94Google Scholar
  12. Buijse AD, Klijn F, Leuwen RSEW, Middelkoop H, Schiemer F, Thorp JH, Wolfert HP (2005) Rehabilitation of large rivers: references, achievements and integration into river management. Arch Hydrobiol Suppl 155:715–738Google Scholar
  13. Capen DE, Fenwick JW, Inkley DB, Boynton AC (1986) Multivariate models of songbird habitat in New England forests. In: Verner J, Morrison ML Ralph CJ (eds) Wildlife (2000) modeling habitat relationships of terrestrial vertebrates. University of Wisconsin Press, Madison, pp 171–177Google Scholar
  14. Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 87:295–302CrossRefGoogle Scholar
  15. Fielding AH, Bell JF (1997) A review of methods for the assessment of predicting errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  16. Fielding AH, Haworth PH (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481CrossRefGoogle Scholar
  17. Fladung E, Scholten M, Thiel R (2003) Modelling the habitat preferences of preadult and adult fishes on the shoreline of the large, lowland Elbe River. J Appl Ichthyol 19:303–314CrossRefGoogle Scholar
  18. Freeman MC, Bowen ZH, Crance JH (1997) Transferability of habitat suitability criteria for fishes in warmwater streams. NAJFM 17:20–31CrossRefGoogle Scholar
  19. Greenwood MT, Bickerton MA, Castella E, Large ARG, Petts GE (1991) The use of Coleoptera (Arthropoda, Insecta) for floodplain characterization on the river Trent, UK. Regul Rivers: Res Mgmt 6:321–332CrossRefGoogle Scholar
  20. Günther J, Assmann T (2005) Restoration ecology meets carabidology: effects of floodplain restitution on ground beetles (Coleoptera, Carabidae). Biodiv Conserv 14:1583–1606CrossRefGoogle Scholar
  21. Gürlich S (1999) Die Laufkäferfauna der Tideelbe. Angew Carab Suppl 1:3–32Google Scholar
  22. Hanley JA, McNeil BJ (1982) The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  23. Hanley JA, McNeil BJ (1983) A method comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMedGoogle Scholar
  24. Harrell FEJ (2001) Regression modeling strategies–with applications to linear models logistic regression, and survival analysis. Springer, New York, 568 ppGoogle Scholar
  25. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley & Sohns, New York, 375 ppGoogle Scholar
  26. Huk T, Kühne B (1999) Substrate selection by Carabus clatratus (Coleoptera, Carabidae) and its consequences for offspring development. Oecologia 121:348–354CrossRefGoogle Scholar
  27. IKSE (Internationale Kommission zum Schutz der Elbe) (1994) Ökologische Studie zum Schutz und zur Gestaltung der Gewässerstrukturen und der Uferrandregionen der Elbe. IKSE, Magdeburg, 106 ppGoogle Scholar
  28. Jansson R, Backx H, Boulton AJ, Dixon M, Dudgeon D, Hughes FMR, Nakamura K, Stanley EH, Tockner K (2005) Stating mechanisms and refining criteria for ecologically successful river restoration: a comment on Palmer et al. J Appl Ecol 42:218–222CrossRefGoogle Scholar
  29. Kleinwächter M (2007) Laufkäfer (Coleoptera, Carabidae) in dynamischen Uferlebensräumen der Elbe–Habitateignung, Schlüsselfaktoren und anthropogene Einflüsse. Ph.D. Thesis, TU Braunschweig, pp 1–139Google Scholar
  30. Kleinwächter M, Eggers TO, Henning M, Anlauf A, Hentschel B, Larink O (2005) Distribution patterns of terrestrial and aquatic invertebrates influenced by different groyne forms along the River Elbe (Germany). Arch Hydrobiol Suppl 155:319–338Google Scholar
  31. Kleinwächter M, Miksche D (2002) Diel activity and habitat selection of carabid beetles on the banks of the River Elbe. In: Szyszko J, Den Boer PJ, Bauer T (eds) How to protect or what we know about Carabid Beetles. X European Carabidologist Meeting, Tuczno 2001. Warsaw Agricultural Univ. Press, Poland pp 59–76Google Scholar
  32. Kleyer M, Kratz R, Lutze G, Schröder B (1999) Habitatmodelle für Tierarten: Entwicklung, Methoden und Perspektiven für die Anwendung. Z Ökologie u Naturschutz 8:177–194Google Scholar
  33. Kunze M, Kache P (1998) Zonationszönosen von Kurzflügelkäfern (Coleoptera, Staphylinidae) an Flussufern Nordwestdeutschlands. Z Ökologie u Naturschutz 7:29–43Google Scholar
  34. Legendre P (1993) Spatial autocorrelation: trouble or a new paradigm. Ecology 74:1659–1673CrossRefGoogle Scholar
  35. Lindroth P (1985) The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol Scandinavica 15:1–497Google Scholar
  36. Lövei GL, Sunderland KD (1996) Ecology and behaviour of ground beetles (Coloptera: Carabidae). Ann Rev Entomol 41:231–256Google Scholar
  37. Luff ML (2005) Biology and ecology of immature stages of ground beetles (Carabidae). In: Lövei GL, Toft S (eds) European carabidology 2003. Proceedings of the 11th European Carabidologist Meeting. Arhus 2003, Denmark, Dias Report Plant Production 114:183–208Google Scholar
  38. Morrison ML, Marcot BG, Mannan RW (1998) Wildlife-habitat relationships–concepts and applications. University of Wisconsin Press, Madison, 416 ppGoogle Scholar
  39. Nagelkerke NJD (1991) A note on general definition of the coefficient of determination. Biometrika 78:691–692CrossRefGoogle Scholar
  40. Paarmann W (1966) Vergleichende Untersuchungen über die Bindung zweier Carabidenarten (P.angustatus DFT. und P oblongopunctatus) an ihre verschiedenen Lebensräume. Z Wiss Zool Abt:A 174:83–176Google Scholar
  41. Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Follstadt Shah J, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O`Donnell TK, Pagano L, Sudduth E (2005) Forum: standards for ecologically successful river restoration. J Appl Ecol 42:208–217CrossRefGoogle Scholar
  42. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133:225–245CrossRefGoogle Scholar
  43. Pearce J, Ferrier S, Scotts D (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. J Environ Man 62:171–184CrossRefGoogle Scholar
  44. Plachter H (1986) Composition of the Carabid beetle fauna of natural riverbanks and of manmade secondary habitats. In: den Boer PJ, Luff ML, Mossakowski D, Weber F (eds) Carabid beetles, their adaptions and dynamics. Fischer, Stuttgart, pp 509–525Google Scholar
  45. Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiv Conserv 12:487–506CrossRefGoogle Scholar
  46. Rickfelder T (2002) Habitat selection of Bembidiini (Col., Carabidae) and their potential as umbrella species. In: Szyszko J, Den Boer PJ, Bauer T (eds) How to protect or what we know about Carabid Beetles. X European Carabidologist Meeting, Tuczno 2001. Warsaw Agricultural Univ. Press, Poland pp 77–96Google Scholar
  47. Rickfelder T (2005) Habitateignung und Schlüsselfaktoren für Carabiden in der Elbaue. PhD Thesis, TU Braunschweig, Landschaftsökol u Umweltforsch 49:1–190Google Scholar
  48. Robinson CT, Tockner K, Ward JV (2002) The fauna of dynamic riverine landscapes. Freshwater Biology 47:661–677CrossRefGoogle Scholar
  49. Rudolf VHW, Rödel M-O (2005) Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142:316–325CrossRefPubMedGoogle Scholar
  50. Sander C (1996) Der Einfluß der Ufermorphologie auf die Artenzusammensetzung an den Ufern der Mittelelbe zwischen Aken und Schönebeck. In: Brandes D (ed) Ufervegetation von Flüssen. Braunschweiger Geobotanische Arbeiten 4, pp 25–33Google Scholar
  51. Schnitter P, Trost M (2004) Rote Liste der Laufkäfer (Coleoptera: Carabidae) des Landes Sachsen-Anhalt. In: Landesamtes für Umweltschutz Sachsen-Anhalt (ed) Rote Liste Sachsen–Anhalt. Ber. LAU Sachsen-Anhalt 39, pp 252–263Google Scholar
  52. Scholten M (2002) Das Jungfischaufkommen in Uferstrukturen des Hauptstromes der mittleren Elbe – zeitliche und räumliche Dynamik. The larval and juvenile fish assemblages of inshore habitats of the River Elbe main channel - temporal and spatial dynamics. Z Fischk Suppl 1:59–77Google Scholar
  53. Scholten M, Anlauf A, Büchele B, Faulhaber P, Henle K, Kofalk S, Leyer I, Meyerhoff J, Purps J, Rast G, Scholz M (2005) The Elbe River in Germany–present state, conflicting goals, and perspectives of rehabilitation. Arch Hydrobiol Suppl 155:479–602Google Scholar
  54. Schröder B (2000) Zwischen Naturschutz und theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor. Ph.D. Thesis, TU Braunschweig Landschaftsökol u Umweltforsch 35:1–256Google Scholar
  55. Schröder B (2003) ROC & AUC-Calculation–evaluating the predictive performance of habitat models.
  56. Schröder B, Richter O (1999) Are habitat models transferable in space and time? Z Ökologie u Naturschutz 8:195–205Google Scholar
  57. Söndgerath D (2004) Kopplung von Populations-und Habitatmodellen am Beispiel von Carabiden in der Elbaue. In: Dormann CF, Lausch A, Blascke T, Söngerath D, Schröder B (eds) Habitatmodelle –Methodik, Anwendung, Nutzen. UFZ-Bericht 9/2004, Leipzig, pp 101–108Google Scholar
  58. Tobin PC (2004) Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time. Ecography 27:767–775CrossRefGoogle Scholar
  59. Trautner J, Müller-Motzfeld G, Bräunicke M (1997) Rote Liste der Sandlaufkäfer und Laufkäfer Deutschlands (Coleoptera: Cicindelidae et Carabidae). Naturschutz u Landschaftsplanung 29:261–273Google Scholar
  60. Wirtz C, Ergenzinger P (2002) Die untere Mittelelbe: hydromorphologische Charakterisierung von ausgesuchten Uferbereichen und Nebengewässern. The lower Middle Elbe: hydromorphological characterizatian of selected shore line areas and oxbows. Z Fischk Suppl 1:13–40Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Institute of GeoecologyTechnical University BraunschweigBraunschweigGermany

Personalised recommendations