Skip to main content

Advertisement

Log in

Population trends and spatial synchrony in peripheral populations of the endangered Lesser grey shrike in response to environmental change

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Regional synchronization in species dynamics as well as particular ecological and demographic characteristics of peripheral populations poses special challenges for conservation purposes, particularly under the current scenario of global climate change. Here, we study the population trend and spatial synchrony of several peripheral populations of the endangered Lesser grey shrike Lanius minor at the western limit of its breeding range (southern France and northeast Spain). In an attempt to ascertain the effect of environmental change on the decline of the species we also look for evidence of climate changes in the breeding and wintering area of this shrike and related effects on vegetation by using the normalized difference vegetation index (NDVI). We found that the interannual fluctuations of the peripheral populations in France and Spain are strongly correlated, therefore suggesting that their decline can be under the influence of a common factor. We obtained clear evidence of climatic change (an increased thermal oscillation) in one peripheral population that could have resulted in a decrease of the NDVI index in the area. Our study finds correlational evidence that climatic variables in the breeding area may account for fluctuations in abundances of some populations and that environmental conditions experimented by some population could influence the fate of the neighboring populations. Our results indicate that the studied peripheral populations are spatially synchronized, so that conservation efforts should be applied at a large-scale encompassing all the isolated populations at the western border of the range of the species in the Mediterranean area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76:300–306

    Article  Google Scholar 

  • Bara T (1995) La population de Pies-Grièches à Poitrine Rose Lanius minor dans la Basse Plaine de l’Aude. Alauda 63:191–198

    Google Scholar 

  • Béchet A, Isenmann P, Mauffrey JF (1995) Un deuxième site de nidification de la Pie-grièche à poitrine rose Lanius minor en Languedoc. Alauda 63:243–244

    Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–2043

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell and Environ 21:455–466

    Article  Google Scholar 

  • Cramp S, Perrins CM (eds) (1993) The birds of the western palearctic, vol VII. Oxford University Press, Oxford and New York

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Curnutt JL, Pimm SL, Maurer BA (1996) Population variability of sparrows in space and time. Oikos 76:131–144

    Article  Google Scholar 

  • Donck G, Bara T (2001) Oiseaux Nicheurs rares en France en 1999: Pie Grièche à Poitrine Rose Lanius minor. Ornithos 8–4:131

    Google Scholar 

  • Giralt D, Bota G (2003) Alcaudón chico, Lanius minor. In: Martí R, del Moral JC (eds), Atlas de las Aves Reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, pp 532–533

    Google Scholar 

  • Giralt D (2004) Trenca Lanius minor. In: Estada J, Pedrocchi V, Brotons L, Herrando S (eds), Atles dels ocells nidificants de Catalunya 1999–2002. Institut Català D’Ornitologia (ICO)/ Lynx edicions, Barcelona, pp 478–479

    Google Scholar 

  • Gordo O, Brotons L, Ferrer X, Comás P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds?. Glob Change Biol 11:12–21

    Article  Google Scholar 

  • Heino M, Kaitala V, Ranta E, Lindström J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc Lond Ser B 264:481–486

    Article  Google Scholar 

  • Hengeveld R, Haeck J (1982) The distribution of abundance. I. Measurements. J Biogeogr 9:303–316

    Article  Google Scholar 

  • Herremans M (1997a) Habitat segregation of male and female Red-backed Shrikes Lanius collurio and Lesser Grey Shrikes Lanius minor in the Kalahari basin, Botswana. J Avian Biol 28:240–248

    Article  Google Scholar 

  • Herremans M (1997b) Lesser Grey Shrike Lanius minor. In: Harrison JA, Allan DG, Underhill LG, Herremans M, Tree AJ, Parker V, Brown CJ (eds), The atlas of southern African birds, vol II. Birdlife South Africa Johannesburg, Johannesburg pp 406–407

  • Herremans M (1998a) Monitoring the world population of the Lesser Grey Shrike (Lanius minor) on the non-breeding grounds in southern Africa. J Ornithol 139:485–493

    Article  Google Scholar 

  • Herremans M (1998b) Conservation status of birds in Botswana in relation to land use. Biol Conserv 86:139–160

    Article  Google Scholar 

  • Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent?. Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Isenmann P, Debout G (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. J Ornithol 141:435–440

    Google Scholar 

  • Isenmann P, Debout G, Lepley M (2000) La Pie-Grièche à Poitrine Rose Lanius minor nicheuse à Montpellier. Alauda 68:123–131

    Google Scholar 

  • Kendall BE, Bjornstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation and spatial synchrony. Am Nat 155:628–636

    Article  PubMed  Google Scholar 

  • Krištín A (1995) Why the Lesser Grey Shrike (Lanius minor) survives in Slovakia: food and habitat preferences and breeding biology. Folia Zool 44:325–334

    Google Scholar 

  • Krištín A, Hoi H, Valera F, Hoi C (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142:305–311

    Article  Google Scholar 

  • Krištín A, Hoi H, Valera F, Hoi C Philopatry, Dispersal Patterns and Nest-site Reuse in Lesser Grey Shrike (Lanius minor).Biodivers Conserv DOI 10.1007/s10531-006-9019-8

  • Labouyrie F (2003) Status de la Pie-Grièche à poitrine rose Lanius minor en Vaunage, Gard. Meridionalis 5:54–60

    Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Article  Google Scholar 

  • Lawton JH, Nee S, Letcher AJ, Harvey PH (1994) Animal distributions: patterns and processes. In: Edwards PJ, May RM, Webb NR (eds), Large-scale ecology and conservation biology. Blackwell Scientific, Oxford England, pp 41–58

    Google Scholar 

  • Lefranc N (1995) Decline and current status of the Lesser Grey Shrike (Lanius minor) in Western Europe. In: Reuven R, Lohrer FE (eds), Shrikes (Lanius) of the World: Biology and Conservation. Proceedings of the Western Foundation for Vertebrate Zoology 6:93–97

  • Lefranc N (1997) Shrikes and the farmed landscape in France. In: Pain DJ, Pienkowski MW (eds), Farming and birds in Europe, Academic Press, London, pp 236–268

  • Lefranc N (1999) Les Pies-grièches Lanius sp. en France: rèpartition et statut actuels, histoire récente, habitats. Ornithos 6:58–82

    Google Scholar 

  • Lefranc N, Worfolk T (1997) Shrikes, A Guide to the Shrikes of the World. Sussex

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760

    Article  Google Scholar 

  • Liebhold A, Koenig WD, Bjornstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  • McArdle BH, Gaston KJ, Lawton JH (1990) Variation in the size of animal populations: pattern, problems, and artifacts. J Anim Ecol 59:439–454

    Article  Google Scholar 

  • Mehlman DW (1997) Change in avian abundance across the geographic range in response to environmental change. Ecol Appl 7:614–624

    Article  Google Scholar 

  • Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710

    Article  Google Scholar 

  • Palmqvist E, Lundberg P (1998) Population extinctions in correlated environments. Oikos 83:359–367

    Article  Google Scholar 

  • Pannekoek J, van Strien AJ (2003) TRIM 3 Manual. TRends and Indices for Monitoring Data. Research paper n° 0102 Voorburg, The Netherlands: Statistics Netherlands. (Available freely at http://zeus.nyf.hu/∼szept/trim.htm)

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (2000) Spatial synchrony in populations of birds: effects of habitat, population trend, and spatial scale. Ecology 81:2112–2125

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescus C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Killberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Peñuelas J, Filella I, Comás P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544

    Article  Google Scholar 

  • Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357

    Article  Google Scholar 

  • Prince SD, Justine CO (1991) Coarse resolution remote sensing of the Sahelian environment. Int J Remote Sens 12:1133–1421

    Article  Google Scholar 

  • Randall MGM (1982) The dynamics of an insect population throughout its altitudinal distribution: Coleophora alticolella (Lepidoptera) in northern England. J Anim Ecol 51:993–1016

    Article  Google Scholar 

  • Ringrose S, Chipanshi AC, Matheson W, Chanda R, Motoma L, Magole I, Jellema A (2002) Climate and human-induced woody vegetation changes in Botswana and their implications for human adaptation. Environ Manage 30:98–109

    Article  PubMed  CAS  Google Scholar 

  • Ringsby TH, Saether BE, Tufto J, Jensen H, Solberg EJ (2002) Asynchronous spatiotemporal demography of a house sparrow metapopulation in a correlated environment. Ecology 83:561–569

    Google Scholar 

  • Royama T (1992) Analytical population dynamics. Chapman and Hall, London, UK

    Google Scholar 

  • Rufray X, Rousseau E (2004) La Pie-Grièche à poitrine rose (Lanius minor): une fin annnoncée. Ornithos 11:36–38

    Google Scholar 

  • Sanz JJ, Potti J, Moreno J, Merino S (2003) Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob Change Biol 9:461–472

    Article  Google Scholar 

  • Schaub M, Kania W, Koppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666

    Article  Google Scholar 

  • StatSoft Inc (2001) STATISTICA for Windows. StatSoft, Inc

    Google Scholar 

  • Tews J, Jeltsch F (2004) Modelling the impact of climate change on woody plant population dynamics in South African savanna. BMC Ecology 4:17. doi: 10.1186/1472-6785-4-17

    Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Article  CAS  Google Scholar 

  • Tilman D, Kareiva P (eds), (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton NJ

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great Tits (Parus major). Proc R Soc Lond B 265:1867–1870

    Article  Google Scholar 

  • Wiegand K, Jeltsch F, Ward D (1999) Analysis of the population dynamics of desert-dwelling Acacia trees with a spatially-explicit computer simulation model. Ecol Modell 117:203–224

    Article  Google Scholar 

  • Williams CK, Ives AR, Applegate RD (2003) Population dynamics across geographical ranges: time-series analyses of three small game species. Ecology 84:2654–2667

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to J.J. Sanz for helping us with NDVI data and for providing useful advises and improving earlier versions of this work. We also thank P. Isenmann, X. Rufray, N. Lefranc, F. Labouyrie, J.C. Albero, J.L. Rivas, J. Estrada and Natural Park of Aiguamolls staff (J. Martí, E. Streich and S. Romero) for kindly providing us unpublished information and to Arco van Strien for his very kind assistance concerning the use of TRIM. Anders P. Møller, T. Szep, M. Herremans, L. Brotons and S. Mañosa provided valuable suggestions and unpublished information. We thank J. Castelló, A. Bonan and L. Juliá for their assistance in the field and G. Bota for his collaboration at the beginning of the project. Two anonymous referees contributed to improve the manuscript. We are grateful to the owners of the properties for all the facilities given and to the people who offered information about the past and current distribution of the species. This research has been funded by the Departament de Medi Ambient i Habitatge (Generalitat de Catalunya) (2001–2002), REGSEGA (2003–2004) and the Fundació Territori i Paisatge (1999). FVH was supported by a I3P contract funded by the European Union and by the Programa de Ayudas para el Retorno de Investigadores de la Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Valera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giralt, D., Valera, F. Population trends and spatial synchrony in peripheral populations of the endangered Lesser grey shrike in response to environmental change. Biodivers Conserv 16, 841–856 (2007). https://doi.org/10.1007/s10531-006-9090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-006-9090-1

Keywords

Navigation