Biodiversity and Conservation

, Volume 16, Issue 4, pp 841–856 | Cite as

Population trends and spatial synchrony in peripheral populations of the endangered Lesser grey shrike in response to environmental change

Original Paper


Regional synchronization in species dynamics as well as particular ecological and demographic characteristics of peripheral populations poses special challenges for conservation purposes, particularly under the current scenario of global climate change. Here, we study the population trend and spatial synchrony of several peripheral populations of the endangered Lesser grey shrike Lanius minor at the western limit of its breeding range (southern France and northeast Spain). In an attempt to ascertain the effect of environmental change on the decline of the species we also look for evidence of climate changes in the breeding and wintering area of this shrike and related effects on vegetation by using the normalized difference vegetation index (NDVI). We found that the interannual fluctuations of the peripheral populations in France and Spain are strongly correlated, therefore suggesting that their decline can be under the influence of a common factor. We obtained clear evidence of climatic change (an increased thermal oscillation) in one peripheral population that could have resulted in a decrease of the NDVI index in the area. Our study finds correlational evidence that climatic variables in the breeding area may account for fluctuations in abundances of some populations and that environmental conditions experimented by some population could influence the fate of the neighboring populations. Our results indicate that the studied peripheral populations are spatially synchronized, so that conservation efforts should be applied at a large-scale encompassing all the isolated populations at the western border of the range of the species in the Mediterranean area.


Lanius minor Mediterranean region Population trend Range periphery Spatial synchrony 



We are indebted to J.J. Sanz for helping us with NDVI data and for providing useful advises and improving earlier versions of this work. We also thank P. Isenmann, X. Rufray, N. Lefranc, F. Labouyrie, J.C. Albero, J.L. Rivas, J. Estrada and Natural Park of Aiguamolls staff (J. Martí, E. Streich and S. Romero) for kindly providing us unpublished information and to Arco van Strien for his very kind assistance concerning the use of TRIM. Anders P. Møller, T. Szep, M. Herremans, L. Brotons and S. Mañosa provided valuable suggestions and unpublished information. We thank J. Castelló, A. Bonan and L. Juliá for their assistance in the field and G. Bota for his collaboration at the beginning of the project. Two anonymous referees contributed to improve the manuscript. We are grateful to the owners of the properties for all the facilities given and to the people who offered information about the past and current distribution of the species. This research has been funded by the Departament de Medi Ambient i Habitatge (Generalitat de Catalunya) (2001–2002), REGSEGA (2003–2004) and the Fundació Territori i Paisatge (1999). FVH was supported by a I3P contract funded by the European Union and by the Programa de Ayudas para el Retorno de Investigadores de la Junta de Andalucía.


  1. Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76:300–306CrossRefGoogle Scholar
  2. Bara T (1995) La population de Pies-Grièches à Poitrine Rose Lanius minor dans la Basse Plaine de l’Aude. Alauda 63:191–198Google Scholar
  3. Béchet A, Isenmann P, Mauffrey JF (1995) Un deuxième site de nidification de la Pie-grièche à poitrine rose Lanius minor en Languedoc. Alauda 63:243–244Google Scholar
  4. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279CrossRefGoogle Scholar
  5. Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–2043CrossRefGoogle Scholar
  6. Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell and Environ 21:455–466CrossRefGoogle Scholar
  7. Cramp S, Perrins CM (eds) (1993) The birds of the western palearctic, vol VII. Oxford University Press, Oxford and New YorkGoogle Scholar
  8. Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526CrossRefGoogle Scholar
  9. Curnutt JL, Pimm SL, Maurer BA (1996) Population variability of sparrows in space and time. Oikos 76:131–144CrossRefGoogle Scholar
  10. Donck G, Bara T (2001) Oiseaux Nicheurs rares en France en 1999: Pie Grièche à Poitrine Rose Lanius minor. Ornithos 8–4:131Google Scholar
  11. Giralt D, Bota G (2003) Alcaudón chico, Lanius minor. In: Martí R, del Moral JC (eds), Atlas de las Aves Reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, pp 532–533Google Scholar
  12. Giralt D (2004) Trenca Lanius minor. In: Estada J, Pedrocchi V, Brotons L, Herrando S (eds), Atles dels ocells nidificants de Catalunya 1999–2002. Institut Català D’Ornitologia (ICO)/ Lynx edicions, Barcelona, pp 478–479Google Scholar
  13. Gordo O, Brotons L, Ferrer X, Comás P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds?. Glob Change Biol 11:12–21CrossRefGoogle Scholar
  14. Heino M, Kaitala V, Ranta E, Lindström J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc Lond Ser B 264:481–486CrossRefGoogle Scholar
  15. Hengeveld R, Haeck J (1982) The distribution of abundance. I. Measurements. J Biogeogr 9:303–316CrossRefGoogle Scholar
  16. Herremans M (1997a) Habitat segregation of male and female Red-backed Shrikes Lanius collurio and Lesser Grey Shrikes Lanius minor in the Kalahari basin, Botswana. J Avian Biol 28:240–248CrossRefGoogle Scholar
  17. Herremans M (1997b) Lesser Grey Shrike Lanius minor. In: Harrison JA, Allan DG, Underhill LG, Herremans M, Tree AJ, Parker V, Brown CJ (eds), The atlas of southern African birds, vol II. Birdlife South Africa Johannesburg, Johannesburg pp 406–407Google Scholar
  18. Herremans M (1998a) Monitoring the world population of the Lesser Grey Shrike (Lanius minor) on the non-breeding grounds in southern Africa. J Ornithol 139:485–493CrossRefGoogle Scholar
  19. Herremans M (1998b) Conservation status of birds in Botswana in relation to land use. Biol Conserv 86:139–160CrossRefGoogle Scholar
  20. Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefGoogle Scholar
  21. Hughes L (2000) Biological consequences of global warming: is the signal already apparent?. Trends Ecol Evol 15:56–61CrossRefPubMedGoogle Scholar
  22. Isenmann P, Debout G (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. J Ornithol 141:435–440Google Scholar
  23. Isenmann P, Debout G, Lepley M (2000) La Pie-Grièche à Poitrine Rose Lanius minor nicheuse à Montpellier. Alauda 68:123–131Google Scholar
  24. Kendall BE, Bjornstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation and spatial synchrony. Am Nat 155:628–636CrossRefPubMedGoogle Scholar
  25. Krištín A (1995) Why the Lesser Grey Shrike (Lanius minor) survives in Slovakia: food and habitat preferences and breeding biology. Folia Zool 44:325–334Google Scholar
  26. Krištín A, Hoi H, Valera F, Hoi C (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142:305–311CrossRefGoogle Scholar
  27. Krištín A, Hoi H, Valera F, Hoi C Philopatry, Dispersal Patterns and Nest-site Reuse in Lesser Grey Shrike (Lanius minor).Biodivers Conserv DOI 10.1007/s10531-006-9019-8Google Scholar
  28. Labouyrie F (2003) Status de la Pie-Grièche à poitrine rose Lanius minor en Vaunage, Gard. Meridionalis 5:54–60Google Scholar
  29. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413CrossRefGoogle Scholar
  30. Lawton JH, Nee S, Letcher AJ, Harvey PH (1994) Animal distributions: patterns and processes. In: Edwards PJ, May RM, Webb NR (eds), Large-scale ecology and conservation biology. Blackwell Scientific, Oxford England, pp 41–58Google Scholar
  31. Lefranc N (1995) Decline and current status of the Lesser Grey Shrike (Lanius minor) in Western Europe. In: Reuven R, Lohrer FE (eds), Shrikes (Lanius) of the World: Biology and Conservation. Proceedings of the Western Foundation for Vertebrate Zoology 6:93–97Google Scholar
  32. Lefranc N (1997) Shrikes and the farmed landscape in France. In: Pain DJ, Pienkowski MW (eds), Farming and birds in Europe, Academic Press, London, pp 236–268Google Scholar
  33. Lefranc N (1999) Les Pies-grièches Lanius sp. en France: rèpartition et statut actuels, histoire récente, habitats. Ornithos 6:58–82Google Scholar
  34. Lefranc N, Worfolk T (1997) Shrikes, A Guide to the Shrikes of the World. SussexGoogle Scholar
  35. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760CrossRefGoogle Scholar
  36. Liebhold A, Koenig WD, Bjornstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490CrossRefGoogle Scholar
  37. McArdle BH, Gaston KJ, Lawton JH (1990) Variation in the size of animal populations: pattern, problems, and artifacts. J Anim Ecol 59:439–454CrossRefGoogle Scholar
  38. Mehlman DW (1997) Change in avian abundance across the geographic range in response to environmental change. Ecol Appl 7:614–624CrossRefGoogle Scholar
  39. Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112CrossRefGoogle Scholar
  40. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  41. Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710CrossRefGoogle Scholar
  42. Palmqvist E, Lundberg P (1998) Population extinctions in correlated environments. Oikos 83:359–367CrossRefGoogle Scholar
  43. Pannekoek J, van Strien AJ (2003) TRIM 3 Manual. TRends and Indices for Monitoring Data. Research paper n° 0102 Voorburg, The Netherlands: Statistics Netherlands. (Available freely at∼szept/trim.htm)Google Scholar
  44. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (2000) Spatial synchrony in populations of birds: effects of habitat, population trend, and spatial scale. Ecology 81:2112–2125CrossRefGoogle Scholar
  45. Parmesan C, Ryrholm N, Stefanescus C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Killberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  46. Peñuelas J, Filella I, Comás P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544CrossRefGoogle Scholar
  47. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357CrossRefGoogle Scholar
  48. Prince SD, Justine CO (1991) Coarse resolution remote sensing of the Sahelian environment. Int J Remote Sens 12:1133–1421CrossRefGoogle Scholar
  49. Randall MGM (1982) The dynamics of an insect population throughout its altitudinal distribution: Coleophora alticolella (Lepidoptera) in northern England. J Anim Ecol 51:993–1016CrossRefGoogle Scholar
  50. Ringrose S, Chipanshi AC, Matheson W, Chanda R, Motoma L, Magole I, Jellema A (2002) Climate and human-induced woody vegetation changes in Botswana and their implications for human adaptation. Environ Manage 30:98–109CrossRefPubMedGoogle Scholar
  51. Ringsby TH, Saether BE, Tufto J, Jensen H, Solberg EJ (2002) Asynchronous spatiotemporal demography of a house sparrow metapopulation in a correlated environment. Ecology 83:561–569Google Scholar
  52. Royama T (1992) Analytical population dynamics. Chapman and Hall, London, UKGoogle Scholar
  53. Rufray X, Rousseau E (2004) La Pie-Grièche à poitrine rose (Lanius minor): une fin annnoncée. Ornithos 11:36–38Google Scholar
  54. Sanz JJ, Potti J, Moreno J, Merino S (2003) Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob Change Biol 9:461–472CrossRefGoogle Scholar
  55. Schaub M, Kania W, Koppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666CrossRefGoogle Scholar
  56. StatSoft Inc (2001) STATISTICA for Windows. StatSoft, IncGoogle Scholar
  57. Tews J, Jeltsch F (2004) Modelling the impact of climate change on woody plant population dynamics in South African savanna. BMC Ecology 4:17. doi: 10.1186/1472-6785-4-17Google Scholar
  58. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213CrossRefGoogle Scholar
  59. Tilman D, Kareiva P (eds), (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton NJGoogle Scholar
  60. Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great Tits (Parus major). Proc R Soc Lond B 265:1867–1870CrossRefGoogle Scholar
  61. Wiegand K, Jeltsch F, Ward D (1999) Analysis of the population dynamics of desert-dwelling Acacia trees with a spatially-explicit computer simulation model. Ecol Modell 117:203–224CrossRefGoogle Scholar
  62. Williams CK, Ives AR, Applegate RD (2003) Population dynamics across geographical ranges: time-series analyses of three small game species. Ecology 84:2654–2667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Centre Tecnològic Forestal de CatalunyaSolsonaSpain
  2. 2.Departament de Biología AnimalUniversitat de Barcelona, Facultat de BiologíaBarcelonaSpain
  3. 3.Estación Experimental de Zonas Áridas (CSIC)AlmeriaSpain

Personalised recommendations