Biodiversity and Conservation

, Volume 16, Issue 3, pp 659–677 | Cite as

Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru

  • Mathias Tobler
  • Euridice Honorio
  • John Janovec
  • Carlos Reynel


We evaluated the usefulness of herbarium collection databases for assessing patterns of species diversity and distribution based on a dataset from the flowering plant families Moraceae and Myristicaceae from the Peruvian Amazon. For Moraceae, a total of 3523 collections were used representing 134 species. The Myristicaceae were represented by 2113 collections of 46 species. We evaluated the distribution of collections based on 252 grid cells (0.5° size) covering all lowland rainforest in the Peruvian Amazon. We found that collections were concentrated in a few cells and that species diversity clearly increases in relation to collection density. Moraceae were collected in only 45% and Myristicaceae in only 31% of the 252 grid cells. Fifty percent of the collections came from just six and three cells, respectively. Most species were represented by only a small number of collections and collected only in a few grid cells, meaning a few widespread common species tend to dominate the collection records. Not surprisingly, most collections were made close to towns and transport routes. We evaluated the usefulness of rarefaction curves and diversity estimators for comparing diversity between regions. These techniques seem to be of little use for botanical collections due to violations of underlying assumptions. Problems such as accuracy of geographic and taxonomic data and strong bias in the spatial representation of the whole dataset are important to consider when basing conservation analysis, planning, and decision-making on seemingly large databases of biodiversity collections and are discussed in detail.


Amazon Biodiversity Botany Collection patterns Conservation Database Floristics GIS Moraceae Myristicaceae Neotropics Peru 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C. Azevedo-Rams and U. Galatti, Patterns of amphibian diversity in Brazilian Amazonia: conservation implications. Biol. Conserv. 103 (2002) 103-111CrossRefGoogle Scholar
  2. A. Balmford, J.L. Moore, T. Brooks, N. Burgess, L.A. Hansen, P. Williams and C. Rahbek, Conservation conflicts across Africa. Science 291 (2001) 2616-2619PubMedCrossRefGoogle Scholar
  3. BIODAMAZ. 2002. Peru Digital 1.0. Diversidad Biológica de la Amazonía Peruana (BIODAMAZ).Google Scholar
  4. F.A. Bisby, The quiet revolution: biodiversity informatics and the internet. Science 289 (2000) 2309-2312PubMedCrossRefGoogle Scholar
  5. R.L. Chazdon, R.K. Colwell, J.S. Denslow and M.R. Guariguata, Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: F. Dallmeier and J.A. Comiskey (eds.) Forest Biodiversity ResearchMonitoring and Modeling: Conceptual Background and Old World Case Studies. Paris: Parthenon Publishing (1998) pp. 285-309Google Scholar
  6. Colwell R.K. 2005. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 7.5. URL:
  7. R.K. Colwell and J.A. Coddington, Estimating terrestrial biodiversity through extrapolation. Philos. Trans. Roy. Soc. B Biol. Sci. 345 (1994) 101-118CrossRefGoogle Scholar
  8. R. Condit, N. Pitman, E.G. Leigh, J. Chave, J. Terborgh, R.B. Foster, P. Nunez, S. Aguilar, R. Valencia, G. Villa, H.C. Muller-Landau, E. Losos and S.P. Hubbell, Beta-diversity in tropical forest trees. Science 295 (2002) 666-669PubMedCrossRefGoogle Scholar
  9. S.D. Davis, V.H. Heywood and A.C. Hamilton, Centres of Plant Diversity: A Guide and Strategy for their Conservation. Cambridge, UK: World Wildlife Fund for Nature (WWF) and IUCN – World Conservation Union (1994).Google Scholar
  10. J.L. Edwards, M.A. Lane and E.S. Nielsen, Interoperability of biodiversity databases: biodiversity information on every desktop. Science 289 (2000) 2312-2314PubMedCrossRefGoogle Scholar
  11. ArcGIS 8.3. Redlands: Environmental Systems Research InstituteInc. (2002).Google Scholar
  12. S. Ferrier, G. Watson, J. Pearce and M. Drielsma, Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodivers. Conserv. 11 (2002) 2275-2307CrossRefGoogle Scholar
  13. E. Forero and S. Mori, The Organization for Flora Neotropica. Brittonia 47 (1995) 379-393CrossRefGoogle Scholar
  14. V.A. Funk, M.F. Zermoglio and N. Nasir, Testing the use of specimen collection data and GIS in biodiversity exploration and conservation decision making in Guyana. Biodivers. Conserv 8 (1999) 727-751CrossRefGoogle Scholar
  15. A.H. Gentry, Neotropical floristic diversity – phytogeographical connections between Central and South-Americapleistocene climatic fluctuations, or an accident of the Andean Orogeny. Ann. Mo. Bot. Gard. 69 (1982) 557-593CrossRefGoogle Scholar
  16. A.H. Gentry, Tree species richness of upper Amazonian forests. Proc. Natl. Acad. Sci. USA 85 (1998) 156-159CrossRefGoogle Scholar
  17. N.J. Gotelli and R.K. Colwell, Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4 (2001) 379-391CrossRefGoogle Scholar
  18. E.C. Honorio and C.R. Reynel, Vacíos en la colección de la flora de los Bosques Húmedos del Perú. Lima: Herbario de la Facultad de Ciencias Forestales Universidad Nacional Agraria La Molina (2003).Google Scholar
  19. INRENA. 2003. Mapa de Áreas Naturales Protegidas del Perú. Versión Digital. Instituto Nacional de Recursos Naturales. Google Scholar
  20. W. Jetz and C. Rahbek, Geographic range size and determinants of avian species richness. Science 297 (2002) 1548-1551PubMedCrossRefGoogle Scholar
  21. W.J. Kress, W.R. Heyer, P. Acevedo, J. Coddington, D. Cole, T.L. Erwin, B.J. Meggers, M. Pogue, R.W. Thorington, R.P. Vari, M.J. Weitzman and S.H. Weitzman, Amazonian biodiversity: assessing conservation priorities with taxonomic data. Biodivers. Conserv. 7 (1998) 1577-1587CrossRefGoogle Scholar
  22. P. Laihonen, R. Kalliola and J. Salo, The biodiversity information clearing-house mechanism (CHM) as a global effort. Environ. Sci. Policy 7 (2004) 99-108CrossRefGoogle Scholar
  23. M.S.Y. Lee, A worrying systematic decline. Trends Ecol. Evol. 15 (2000) 346-346PubMedCrossRefGoogle Scholar
  24. B.A. Loiselle, C.A. Howell, C.H. Graham, J.M. Goerck, T. Brooks, K.G. Smith and P.H. Williams, Avoiding pitfalls of using species distribution models in conservation planning. Conserv. Biol. 17 (2003) 1591-1600CrossRefGoogle Scholar
  25. C.R. Margules, R.L. Pressey and P.H. Williams, Representing biodiversity: data and procedures for identifying priority areas for conservation. J. Biosci. 27 (2002) 309-326PubMedGoogle Scholar
  26. R.A. Mittermeier, N. Myers, J.B. Thomsen, G.A.B. da Fonseca and S. Olivieri, Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv. Biol. 12 (1998) 516-520CrossRefGoogle Scholar
  27. S.A. Mori, Neotropical floristics and inventory: who will do the work?. Britonnia 44 (1992) 372-375CrossRefGoogle Scholar
  28. N. Myers, R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca and J. Kent, Biodiversity hotspots for conservation priorities. Nature 403 (2000) 853-858PubMedCrossRefGoogle Scholar
  29. B.W. Nelson, C.A.C. Ferreira, M.F. Dasilva and M.L. Kawasaki, Endemism centers, refugia and botanical collection density in Brazilian Amazonia. Nature 345 (1990) 714-716CrossRefGoogle Scholar
  30. D.M. Olson, E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D’Amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, T.H. Ricketts, Y. Kura, J.F. Lamoreux, W.W. Wettengel, P. Hedao and K.R. Kassem, Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51 (2001) 933-938CrossRefGoogle Scholar
  31. E. Pennisi, Taxonomic revival. Science 289 (2000) 2306-2308PubMedCrossRefGoogle Scholar
  32. F.T. Petersen, R. Meier and M. Nykjaer, Testing species richness estimation methods using museum label data on the Danish Asilidae. Biodivers. Conserv. 12 (2003) 687-701CrossRefGoogle Scholar
  33. O.L. Phillips and P.H. Raven, A strategy for sampling neotropical forests. In: A.C. Gibson (ed.) Neotropical Biodiversity and Conservation. Los Angeles: Mildred E. Mathias Botanical Garden,University of California (1997) pp. 141-165Google Scholar
  34. N.C.A. Pitman, J.W. Terborgh, M.R. Silman, P. Nunez, D.A. Neill, C.E. Ceron, W.A. Palacios and M. Aulestia, Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82 (2001) 2101-2117CrossRefGoogle Scholar
  35. W.F. Ponder, G.A. Carter, P. Flemons and R.R. Chapman, Evaluation of museum collection data for use in biodiversity assessment. Conserv. Biol. 15 (2001) 648-657CrossRefGoogle Scholar
  36. G.T. Prance, Floristic inventory of the tropics: where do we stand?. Ann. Mo. Bot. Gard. 64 (1977) 659-684CrossRefGoogle Scholar
  37. G.T. Prance, The use of phytogeographic data for conservation planning. In: P.L. Forey, C.J. Humphries and R.I. Vane-Wright (eds.) Systematics and Conservation Evaluation. Oxford: Systematics and Conservation Evaluation (1994) pp. 145-163Google Scholar
  38. G.T. Prance, H. Beentje, J. Dransfield and R. Johns, The tropical flora remains undercollected. Ann. Mo. Bot. Gard. 87 (2000) 67-71CrossRefGoogle Scholar
  39. P.H. Raven, Tropical floristics tomorrow. Taxon 37 (1988) 549-560CrossRefGoogle Scholar
  40. S. Reddy and L.M. Davalos, Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30 (2003) 1719-1727CrossRefGoogle Scholar
  41. Systematic Agenda 2000: Charting the Biosphere. New York, NY: American Museum of Natural History (1994).Google Scholar
  42. J. Soberon and A.T. Peterson, Biodiversity informatics: managing and applying primary biodiversity data. Philos. Trans. Roy. Soc. B Biol. Sci. 359 (2004) 689-698CrossRefGoogle Scholar
  43. J.M. Soberon, J.B. Llorente and L. Onate, The use of specimen-label databases for conservation purposes: an example using Mexican Papilionid and Pierid butterflies. Biodivers. Conserv. 9 (2000) 1441-1466CrossRefGoogle Scholar
  44. H. ter Steege, M.J. Jansen-Jacobs and V.K. Datadin, Can botanical collections assist in a national protected area strategy in Guyana?. Biodivers. Conserv. 9 (2000a) 215-240CrossRefGoogle Scholar
  45. H. ter Steege, N. Pitman, D. Sabatier, H. Castellanos, P. Van der Hout, D.C. Daly, M. Silveira, O. Phillips, R. Vasquez, T. Van Andel, J. Duivenvoorden, A.A. De Oliveira, E.K. Renske, R. Lilwah, R. Thomas, J. Van Essen, C. Baider, P. Maas, S. Mori, J. Terborgh, P. Nuez, H. Mogollon and W. Morawetz, A spatial model of tree α-diversity and tree density for the Amazon. Biodivers. Conserv. 12 (2003) 2255-2277CrossRefGoogle Scholar
  46. H. ter Steege, D. Sabatier, H. Castellanos, T. Van Andel, J. Duivenvoorden, A.A. De Oliveira, R. Ek, R. Lilwah, P. Maas and S. Mori, An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Tropical Ecol. 16 (2000b) 801-828CrossRefGoogle Scholar
  47. W.W. Thomas, Conservation and monographic research on the flora of Tropical America. Biodivers. Conserv. 8 (1999) 1007-1015CrossRefGoogle Scholar
  48. H. Tuomisto, K. Ruokolainen and M. Yli-Halla, Dispersal, environmentand floristic variation of western Amazonian forests. Science 299 (2003) 241-244PubMedCrossRefGoogle Scholar
  49. P.H. Williams, G.T. Prance, C.J. Humphries and K.S. Edwards, Promise and problems in applying quantitative complementary areas for representing the diversity of some neotropical plants (families DichapetalaceaeLecythidaceaeCaryocaraceaeChrysobalanaceae and Proteaceae). Biol. J. Linnean Soc. 58 (1996) 125-157CrossRefGoogle Scholar
  50. E.O. Wilson, A global biodiversity map. Science 289 (2000) 2279-2279PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mathias Tobler
    • 1
  • Euridice Honorio
    • 2
  • John Janovec
    • 1
  • Carlos Reynel
    • 2
  1. 1.Botanical Research Institute of TexasTexasUSA
  2. 2.La Molina Forestry Herbarium, Facultad de Ciencias ForestalesUniversidad Nacional Agraria La MolinaLimaPeru

Personalised recommendations