Advertisement

Biodiversity & Conservation

, Volume 14, Issue 14, pp 3351–3362 | Cite as

Predicting Species Numbers Using Species–Area and Endemics–Area Relations

  • Werner Ulrich
Article

Abstract

Current ecological theory predicts an allometric relation between the number of species with restricted range size (endemics) and area (the endemics–area relation EAR), a pattern similar to the common species–area relation (SAR). Using SARs and EARs we can estimate species loss after habitat loss. A comparison of the predictive power of both approaches (using a patch occupancy model and data from European butterflies) revealed that the EAR approach is less reliable than the SAR. Contrary to current theory it appeared that EARs are relations in their own right that describe spatial distributions of endemic species. They do not simply follow from the underlying SAR. The implications of these results for the applicability of SARs and EARs in biodiversity forecasting are discussed.

Keywords

Butterflies Endemics Endemics–area relation Lepidoptera Patch occupancy model Species–area relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrén, H. 1994Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a reviewOikos71355366Google Scholar
  2. Andersen M., Thoruhill A. and Koopowitz H. 1997. Tropical forest disruption and stochastic biodiversity loss. In: Laurance W.F. and Bierregard R.O. (eds), Tropical Forest Remnants. University of Chicago Press, pp. 281–291.Google Scholar
  3. Arrhenius, O. 1921Species and areaJ. Ecol.99599Google Scholar
  4. Balmford, A., Long, A. 1994Avian endemism and forest lossNature372623624CrossRefGoogle Scholar
  5. Burrough, P.A. 1983Multiscale sources of spatial variation in soil I. The application of fractal concepts to nested levels of soil variationJ. Soil Sci.34577597Google Scholar
  6. Colwell, R.K., Coddington, J.A. 1994Estimating terrestrial biodiversity through extrapolationPhilos. Trans. R. Soc. Lond. B345101118Google Scholar
  7. Connor, E.F., McCoy, E.D. 1979The statistics and biology of the species–area relationshipAm. Nat.113791833CrossRefGoogle Scholar
  8. Crawley, M.J., Harral, J.E. 2001Scale dependence in plant biodiversityScience291864868PubMedCrossRefGoogle Scholar
  9. Golden, D.M., Crist, T.O 1999Experimental effects of habitat fragmentation on old-field canopy insects: community, guild and species responsesOecologia118371380CrossRefGoogle Scholar
  10. Griffiths, D. 1992Sizeabundanceand energy use in communitiesJ. Anim. Ecol.61307315Google Scholar
  11. Hanski I. 1999. Metapopulation Ecology. University Press Oxford.Google Scholar
  12. Harte J. 2000. Scaling and self-similarity in species distributions: implications for extinction, species richness, abundance, and range. In: Brown J.H., West G.B. and Enquist B.J. (eds), Scaling in Biology: Patterns and Processes, Causes and Consequences. Oxford University Press, pp. 325–342.Google Scholar
  13. Harte, J., Kinzig, A.P. 1997On the implications of species–area relationships for endemismspatial turnoverand food web patternsOikos80417427Google Scholar
  14. Harte, J., Kinzig, A.P., Green, J. 1999Self-similarity in the distribution and abundance of speciesScience284334336PubMedCrossRefGoogle Scholar
  15. Hastings H.M. and Sugihara G. 1993. Fractals – A User’s Guide for the Natural Sciences. Oxford University Press.Google Scholar
  16. Kinzig, A.P., Harte, J. 2000Implications of endemics–area relationships for estimates of species extinctionEcology8133053311Google Scholar
  17. Kruess, A., Tscharnke, T. 2000Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepiumOecologia122129137Google Scholar
  18. Leitner, W.A., Rosenzweig, M.L. 1997Nested species-area curves and stochastic sampling: a new theoryOikos79503512Google Scholar
  19. Lennon, J.J., Kunin, W.E., Hartley, S. 2002Fractal species distributions do not produce power-law species–area relationshipsOikos97378386CrossRefGoogle Scholar
  20. Lomolino, M.V. 2000Ecologist’s most general, yet protean pattern: the species–area relationshipJ. Biogeogr.271726Google Scholar
  21. Lomolino, M.V., Weiser, M.D. 2001Towards a more general species–area relationship: diversity on all islands, great and smallJ. Biogeogr.28431445CrossRefGoogle Scholar
  22. Maddux, R.D., Athreya, K. 1999On the distribution and abundance of speciesScience2861647aCrossRefGoogle Scholar
  23. May R.M., Lawton J.H. and Stork N.E. 1995. Assessing extinction rates. In: Lawton J.H. and May R.M. (eds), Extinction Rates. University Press Oxford, pp. 1–24.Google Scholar
  24. Ney-Nifle, M., Mangel, M. 1999Species–area curves based on geographic range and occupancyJ. Theoret. Biol.196327342Google Scholar
  25. Ney-Nifle, M., Mangel, M. 2000Habitat loss and changes in the species–area relationshipConserv. Biol.14893898CrossRefGoogle Scholar
  26. Pearson, D.L., Cassola, F. 1992World-wide species richness patterns of tiger beetles (Coeleoptera: Cicindelidae): indicator taxon for biodiversity and conservation studiesConserv. Biol.6376391CrossRefGoogle Scholar
  27. Pimm, S.L. 1998ExtinctionSutherland, W.J. eds. Conservation Science and ActionBlackwellOxford2838Google Scholar
  28. Pimm, S.L., Askins, R.A. 1995Forest losses predict bird extinction in eastern North AmericaProc. Natl. Acad. Sci. USA9293439347PubMedGoogle Scholar
  29. Plotkin, J.B., Potts, M.D., Yu, D.W., Bunyavejchewin, S., Condit, R., Foster, R., Hubbell, S., LaFranckie, J., Manokaran, N., Seng, L.H., Sukarmar, R., Nowak, M.A., Ashton, P.S. 2000Predicting species diversity in tropical forestsProc. Natl. Acad. Sci. USA971085010854PubMedGoogle Scholar
  30. Rosenzweig M.L. 1995. Species Diversity in Space and Time. University Press Cambridge.Google Scholar
  31. Rosenzweig, M.L. 2001Loss of speciation rate will impoverish future diversityProc. Natl. Acad. Sci. USA9854045410PubMedCrossRefGoogle Scholar
  32. Summerville, K.S., Crist, T.O. 2003Determinants of Lepidopteran community composition and species diversity in eastern deciduous forests: roles of season, ecoregion and patch sizeOikos100134148CrossRefGoogle Scholar
  33. Swaay C. and van Warren M. 1999. Red Data Book of European Butterflies (Rhopalocera). Nature and Environment No. 99, Strasbourg.Google Scholar
  34. Tokeshi, M. 1996Power fraction: a new explanation of relative abundance patterns in species-rich assemblagesOikos75543550Google Scholar
  35. Ulrich W. 2002a. Patch Occupancy – a FORTRAN program for the study of species spatial distributions. www.uni.torun.pl/˜ulrichwGoogle Scholar
  36. Ulrich W. 2002b. RAD – a FORTRAN program for the study of relative abundance distributions. www.uni.torun.pl/˜ulrichwGoogle Scholar
  37. Ulrich, W 2004aPatchOccupancy – a FORTRAN program for modeling patterns of species spatial distributionsEcol. Quest.41319Google Scholar
  38. Ulrich W. 2004b. Fitting stochastic models of relative abundance distributions to species abundance data. Ecol. Quest. 4, (in press).Google Scholar
  39. Ulrich, W., Buszko, J. 2003aSelf-similarity and the species–area relation of Polish butterfliesBasic Appl. Ecol.4263270CrossRefGoogle Scholar
  40. Ulrich, W., Buszko, J. 2003bThe species–area relationship of butterflies in Europe: the simulation of extinction processes reveals different patterns between Northern and Southern EuropeEcography26365374CrossRefGoogle Scholar
  41. Ulrich W. and Buszko J. 2004a. Detecting biodiversity hotspots using species–area and endemics–area relationships: the case of butterflies. Biodiv. Conserv., (in press).Google Scholar
  42. Ulrich, W., Buszko, J. 2004bHabitat reduction and patterns of species lossBasic Appl. Ecol.5231240CrossRefGoogle Scholar
  43. Veech, J.A. 2000Choice of species-area function affects identification of hotspotsConserv. Biol.14140147CrossRefGoogle Scholar
  44. Wilson, E.O. 1992The Diversity of LifeNortonNew YorkGoogle Scholar
  45. Zschokke, S., Dolt, C., Rusterholz, H.-P., Oggler, P., Braschler, B., Thommen, G.H., Lüdin, E., Erhardt, A., Baur, B. 2000Short term responses of plants and invertebrates to experimental small-scale grassland fragmentationOecologia125559572CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Animal EcologyNicolaus Copernicus University in ToruńToruńPoland

Personalised recommendations