Biodiversity & Conservation

, Volume 15, Issue 1, pp 69–82 | Cite as

How Ant Nests Increase Soil Biota Richness and Abundance: A Field Experiment

  • April M. Boulton
  • Keith D. Amberman


Although many studies have shown that ant nests tend to increase soil nutrient concentrations, only a few have examined ant impact on soil biota. To date, no one has examined the mechanism behind this complex ‘ant effect.’ In this study, we employed a 2 × 2 complete factorial design (water × food) in the field to mimic the effects of harvester ant nests (Messor andrei) on soil. We hypothesized that, in the absence of ants, addition of moisture and food (seeds and insects) would interact to produce conditions found in ant nests. Our results indicated that the addition of food to the soil (regardless of water addition) best mimicked the conditions found inside M. andrei nests. Both food-treated and ant-nest soils supported higher numbers of bacteria, nematodes, miscellaneous eukaryotes, and microarthropods compared to the other soil treatments. Microbial richness was also highest in ant and food-treated samples. Moreover, the ant effect in our experiment occurred in just two months. Because ants are a widespread, abundant group with many long-lived species, they could substantially influence soil properties and belowground food webs and may have important restoration/conservation implications for terrestrial communities.


Abundance Ant nests Field experiment MANOVA Messor andrei Richness Soil foodwebs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beare, M., Parmelee, R., Hendrix, P., Cheng, W. 1992Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystemsEcol. Monogr.62569591CrossRefGoogle Scholar
  2. Boag, B., Yeates, G. 1998Soil nematode biodiversity in terrestrial ecosystemsBiodiv. Conserv.7617630CrossRefGoogle Scholar
  3. Bongers, T., Bongers, M. 1998Functional diversity of nematodesAppl. Soil Ecol.10239251CrossRefGoogle Scholar
  4. Bossio, D., Scow, K. 1995Impact of carbon and flooding on metabolic diversity of microbial communities in soilsAppl. Envir. Microbiol.6140434050Google Scholar
  5. Bossio, D., Scow, K. 1998Impact of carbon and flooding on PFLA profiles and substrate utilization patterns of soil microbial communitiesMicrobial Ecol.35265278CrossRefGoogle Scholar
  6. Boulton, A.M., Jaffee, B.A., Scow, K.M. 2003Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biotaAppl. Soil Ecol.23257265CrossRefGoogle Scholar
  7. Brady, N., Weil, R. 1996The nature and properties of soils11Prentice-Hall, Inc.New YorkGoogle Scholar
  8. Bradley, G. 1972Transplanting Formica obscuripes and Dolichoderus taschenbergi (Hymenoptera: Formicidae) colonies in jack pine stands of southeastern CanadaCan. Entomol.104245249CrossRefGoogle Scholar
  9. Brown, M. 1999Nest relocation and encounters between colonies of the seed-harvesting ant Messor andrei Insectes Sociaux466670CrossRefGoogle Scholar
  10. Campbell, C., Biederbeck, V. 1976Soil bacterial changes as affected by growing season weather conditions: a field and laboratory studyCan. J. Soil Sci.56293310CrossRefGoogle Scholar
  11. Cole, B. 1994Nest architecture in the western harvester antPogonomyrmex occidentalis (Cresson)Insectes Sociaux41401410CrossRefGoogle Scholar
  12. Dean, W., Milton, S., Klotz, S. 1997The role of ant-mounds in maintaining small-scale patchiness in dry grasslands in Central GermanyBiodiv. Conserv.612921307Google Scholar
  13. Doran, J. 1987Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soilsBiol. Fert. Soils56875CrossRefGoogle Scholar
  14. Folgarait, P. 1998Ant biodiversity and its relationship to ecosystem functioning: a reviewBiodiv. Conserv.712211244CrossRefGoogle Scholar
  15. Friese, C., Allen, M. 1993The interaction of harvester ants and vesicular-arbuscular mycorrhizal fungi in a patchy semi-arid environment: the effects of mound structure on fungal dispersion and establishmentFunctional Ecol.71320CrossRefGoogle Scholar
  16. Hölldobler, B., Wilson, E. 1990The AntsHarvard University PressMassachusettsGoogle Scholar
  17. Jaffee, B., Ferris, H., Scow, K. 1998Nematode-trapping fungi in organic and conventional cropping systemsPhytopathology88344349CrossRefPubMedGoogle Scholar
  18. Laakso, J., Setälä, H. 1997Nest mounds of red wood ants (Formica aquilonia): hot spots for litter dwelling earthwormsOecologia111565569CrossRefGoogle Scholar
  19. Laakso, J., Setälä, H. 1998Composition and trophic structure of detrital food webs in ant nest mounds of Formica aquiloniain the surrounding forest soilOikos81266278CrossRefGoogle Scholar
  20. MacKay, W. 1981A comparison of the nest phenologies of three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae)Psyche882574CrossRefGoogle Scholar
  21. Mikola, J., Yeates, G., Barker, G., Wardle, D., Bonner, K. 2001Effects of defoliation intensity on soil food-web properties in an experimental grasslandOikos92333343CrossRefGoogle Scholar
  22. Parmelee R., Bohlen P. and Edwards C. 1995. Analysis of nematode trophic structure in agro-systems: functional groups versus high resolution taxonomy. In: Collins H.P., Robertson G.P. and Klug M.J. (eds), The Significance and Regulation of Soil Biodiversity. Kluwer Academic Publishers, pp. 203–207.Google Scholar
  23. Pavon, M. 1950Sugli inizi d’un esperimento practico di lotta biologica con Formica rufa L. contro la processionaria del pino (ThaumetoPoea PityocamPa Sch.)Atti Soc. Ital. Sci. Nat.89195201Google Scholar
  24. Pavon, M. 1960Les transplantations de Formica lugubris sur les Apennins de la province de PavieItaly Ministry of Agriculture, Collana Verde7161169Google Scholar
  25. Preisser, E.L. 2003Field evidence for a rapidly cascading underground food webEcology84869874CrossRefGoogle Scholar
  26. Sokal R. and Rohlf F. 1995. Biometry, 3rd edn. W.H. Freeman and Company.Google Scholar
  27. Strong, D., Maron, J., Connors, P. 1996Top down from underground? The under-appreciated influence of subterranean food webs on above-ground ecologyPolis, G.A.Winemiller, K.O. eds. Food Webs: Integration of Patterns and DynamicsChapman and HallNew York170175Google Scholar
  28. Tabachnick B. and Fidell L. 1996. Using Multivariate Statistics, 3rd edn. Harper Collins College Publishers.Google Scholar
  29. University of California, Natural Reserve System (UC NRS). 2000. Natural history of the McLaughlin Reserve. UC Davis printing services.Google Scholar
  30. Wagner, D., Brown, M., Gordon, D. 1997Harvester ant nests, soil biota and soil chemistryOecologia112232236CrossRefGoogle Scholar
  31. White, D., Findlay, R. 1988Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilmsHydrobiologia159119132Google Scholar
  32. Whitford, W. 1996The importance of the biodiversity of soil biota in arid ecosystemsBiodiv. Conserv.5185195CrossRefGoogle Scholar
  33. Whitford, W., DiMarco, R. 1995Variability in soils and vegetation associated with harvester ant (Pogonomyrmex rugosus) nests on a Chihuahuan Desert watershedBiol. Fert. Soils20169173CrossRefGoogle Scholar
  34. Yeates, G., Bongers, T., deGoede, R., Georgieva, S. 1993Feeding habits in nematode families and genera – an outline for soil ecologistsJ. Nematol.25315331PubMedGoogle Scholar
  35. Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., Tilman, D. 2003Plant diversity, soil microbial communities, and ecosystem function: are there any links?Ecology8420422050CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • April M. Boulton
    • 1
    • 3
  • Keith D. Amberman
    • 2
  1. 1.Department of Environmental Science and PolicyUniversity of CaliforniaDavis, California
  2. 2.Veterinary HospitalUniversity of PennsylvaniaPhiladelphia, Pennsylvania
  3. 3.Department of BiologyVillanova UniversityVillanova

Personalised recommendations