Biodiversity & Conservation

, Volume 13, Issue 14, pp 2679–2694 | Cite as

Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil

  • Samir G. Rolim
  • Adriano G. Chiarello


Cocoa (Theobroma cacao) is cultivated in the states of Bahia and Espírito Santo in eastern Brazil under the so-called ‘cabruca system’, where the understorey of native Atlantic forest is cleared and the canopy is thinned out to provide adequate shading for the cocoa trees. Apart from its economic and social role, the cabruca system is said to be important for the conservation of Atlantic forest biodiversity. In this paper we studied tree species richness and forest structure of cabrucas to examine the demographic health of these forests and discuss their long-term survival. Data were collected in 20 farms located alongside a 30 km track of the northern margin of the Rio Doce, in northern Espírito Santo. All trees ≥5 cm DBH were identified and their diameter was measured in 80 plots (600 m2), totalling 4.8 ha of sampled area. Recorded trees were also allocated to four different regeneration phases (pioneers, early secondary, late secondary and climax). The inventory resulted in 507 trees belonging to 105 species in 39 families. This species richness is much lower than in less disturbed forests located in the region. Pioneers and early secondary species dominate the cabruca forest in terms of number of species (56.2%), density (71.0%) and basal area (72.3%). The distribution of diameter frequency showed an imbalance in tree regeneration. Most trees in the range of 5–30 cm DBH were pioneers (40.7%), or early secondary species (32.6%), while late secondary and climax trees were less frequent (10.2 and 16.5% of the sampled trees, respectively). The dominance of species of early regeneration phases was also observed for trees >30 cm DBH (69.0% of pioneers or early secondary and 31.0% of late secondary or climax species). The results indicated that the cabruca forests are not only less diverse and less dense than secondary or primary forests of the region, but also, and more importantly, their natural succession and gap dynamics are being severely impaired. As a consequence, cabrucas present a structure where tree species of late successional phases are becoming increasingly rare while pioneers and early secondary species are becoming dominant. If current management practices of thinning and clearing of native trees are not improved, the long-term survival of these forests is questionable and their role in maintaining biodiversity in the long run is limited.

Agroforestry systems Atlantic forest Biodiversity conservation Brazil Cocoa tree Theobroma cacao 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger K. 1998. The Reproduction of the Cocoa Industry and Biodiversity in Southern Bahia, Brazil. Proc. 1st Int. Workshop on Sustainable Cocoa Growing, Panama, 3/30–4/2, 1998, Smithsonian Migratory Bird Center, Panama ( Scholar
  2. Alves M.C. 1990. The role of cocoa plantations in the conservation of the Atlantic forest of Southern Bahia, Brazil. M.S. Thesis, University of Florida, Gainesville, Florida.Google Scholar
  3. Alvim P.T. 1966. O problema do sombreamento do cacaueiro. Cacau Atualidades 3: 2–5.Google Scholar
  4. Alvim R. and Nair P.K.R. 1986. Combination of cacao and eight other plantation crops: An agroforestry system in Southeast Bahia, Brazil. Agroforestry Systems 4: 3–15.Google Scholar
  5. Alvim P.T. and Pereira C.P. 1965. Sombra e espaçamento nas plantações de cacau no estado da Bahia e Centro de Pesquisas do Cacau, Relatório Anual 1964, CEPLAC/CEPEC, Ilhéus, pp. 18–19.Google Scholar
  6. Batista L.P. and Alvim R. 1981. Efeitos da intensidade luminosa e do fenótipo sobre o crescimento em altura do fuste do cacaueiro. Revista Theobroma 11: 61–76.Google Scholar
  7. Bodmer R.E. 1991. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23: 255–261.Google Scholar
  8. Budowski G. 1965. Distribution of tropical American rain forest species in the light of sucessional processes. Turrialba 15: 40–42.Google Scholar
  9. Carey E.V., Brown S., Gillespie A.J.R. and Lugo A.E. 1994. Tree mortality in mature lowland tropical moist and tropical lower montane moist forests of Venezuela. Biotropica 26: 255–265.Google Scholar
  10. Chiarello A.G. 1997. Mammalian community and vegetation structure of Atlantic forest fragments in south-eastern Brazil. Ph.D Thesis, University of Cambridge, Cambridge, UK.Google Scholar
  11. Chiarello A.G. 1999. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biological Conservation 89: 71–82.Google Scholar
  12. Chiarello A.G. 2000a. Influência da caça ilegal sobre mamíferos e aves das matas de tabuleiro do norte do estado do Espírito Santo. Boletim do Museu de Biologia Mello Leitão (Nova Série) 11/12: 229–247.Google Scholar
  13. Chiarello A.G. 2000b. Density and population size of mammals in remnants of Brazilian Atlantic forest. Conservation Biology 14: 1649–1657.Google Scholar
  14. Cochran W.G. 1977. Sampling Techniques. John Wiley and Sons, New York.Google Scholar
  15. Constanza R., D'Arge R., Groot R., Farber S., Grasso M., Hannon B. et al. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253–260.Google Scholar
  16. Constanza R., D'Arge R., Groot R., Farber S., Grasso M., Hannon B. et al. 1998. The value of ecosystem services: putting the issues in perspective. Ecological Economics 25: 67–72.Google Scholar
  17. Cullen Jr. L., Bodmer R.E. and Pádua C.V. 2000. Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biological Conservation 95: 49–56.Google Scholar
  18. Cunningham R.K. and Burridge J.C. 1960. The growth of cacao (Theobroma cacao L.) with and without shade. Annals of Botany 24: 458–462.Google Scholar
  19. Delabie J.H.C. 1988. Ocorrência de Wasmannia auropunctata (Roger, 1863) (Hymenoptera, Formicidae, Myrmicinae) em cacauais na Bahia, Brasil. Revista Theobroma 18: 29–37.Google Scholar
  20. Duguma B., Gockowski J. and Bakala J. 1998. Smallholder cocoa (Theobroma cacao) cultivation in agroforestry systems of west and central Africa: challenges and opportunities. Proc. 1st Int. Workshop on Sustainable Cocoa Growing, Panama, 3/30–4/2, 1998, Smithsonian Migratory Bird Center, Panama ( Scholar
  21. Ewel J.J. 1986. Designing agricultural ecosystems for the humid tropics. Annual Review of Ecology and Systematic 17: 245–271.Google Scholar
  22. Fassbender H. 1993. Modelos edafológicos de sistemas agroforestales. Turrialba, CATIE, Costa Rica.Google Scholar
  23. Fernandes E.N. and Vinha S.G. 1984. Recomposiçao florística do Parque Zoobotânico do Centro de Pesquisas do Cacau. Revista Theobroma 14: 1–25.Google Scholar
  24. Gotelli N.J. and Colwell R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.Google Scholar
  25. Gotelli N.J. and Entsminger G.L. 2003. EcoSim: Null models software for ecology. Version 7.0. Acquired Intelligence Inc. and Kesey-Bear, Burlington, Vermont ( ~ gentsmin/ecosim.htm).Google Scholar
  26. Greenberg R. 1998. Biodiversity in the Cacao Agroecosystem: Shade Management and Landscape Considerations. Proc. 1st Int. Workshop on Sustainable Cocoa Growing, Panama, 3/30–4/2, 1998, Smithsonian Migratory Bird Center, Panama ( Scholar
  27. Griffith D.M. 2000. Agroforestry: a refuge for tropical biodiversity after fire. Conservation Biology 14: 325–326.Google Scholar
  28. Hummel M. 1995. Botanical analysis of the shade tree population in two cabruca cocoa plantations in southern Bahia, Brazil. Dissertation in Agricultural Biology, University of Stuttgart, Stuttgart, Germany.Google Scholar
  29. Johns N.D. 1999. Conservation in Brazil's chocolate forest: the unlikely persistence of the traditional cocoa agroecosystem. Environmental Management 23: 31–47.Google Scholar
  30. Julliot C. 1994. Frugivory and seed dispersal by red howler monkeys: evolutionary aspect. Revue d'Ecologie (Terre Vie) 49: 331–341.Google Scholar
  31. Kinzey W.G. 1982. Distribution of primates and forest refuges. In: Prance G.T. (ed) Biological Diversification in the Tropics. Columbia University Press, New York, pp. 455–482.Google Scholar
  32. Laurance W.F., Vasconcelos H.L. and Lovejoy T.E. 2000. Forest loss and fragmentation in the Amazon: implications for wildlife conservation. Oryx 34: 39–45.Google Scholar
  33. Lieberman M., Lieberman D., Hartshorn G.S. and Peralta R. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73: 505–516.Google Scholar
  34. Manokaram N. and Kochummen K.M. 1987. Recruitment, growth and mortality of tree species in a lowland dipterocarp forest in Peninsular Malaysia. Journal of Tropical Ecology 3: 315–330.Google Scholar
  35. Montagnini F. 1992. Sistemas agroforestales: principios y aplicaciones en los trópicos. Organización para Estudios Tropicales (OET), San José, Costa Rica.Google Scholar
  36. Mori S.A., Boom B.M., Carvalho A.M. and Santos T.S. 1983. Southern Bahian moist forests. The Botanical Review 49: 155–232.Google Scholar
  37. Moura R.T. 1999. Análise Comparativa da Estrutura da Comunidade de Pequenos Mamíferos em Remanescentes da Mata Atlântica e Plantio de Cacau em Sistema de Cabruca no Sul da Bahia. M.Sc. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.Google Scholar
  38. Mueller-Dombois D. and Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley, New York.Google Scholar
  39. Myers N. 1986. Forestland farming in western Amazonia: stable and sustainable. Forest Ecology and Management 15: 81–93.Google Scholar
  40. Myers N. 1989. Deforestation Rates in Tropical Forests and their Climate Implications. Friends of the Earth, London.Google Scholar
  41. Nair P.K.R. (ed) 1989. Agroforestry Systems in the Tropics. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  42. Pardini R. 2001. Pequenos mamíferos e a fragmentação da Mata Atlântica de Una, sul da Bahia-processos e conservação. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil.Google Scholar
  43. Parrish J., Reitsma R. and Greenberg G. 1998. Cacao as crop and conservation tool. Lessons from the Talamanca region of Costa Rica. Proc. 1st International Workshop on Sustainable Cocoa Growing, Panama, 3/30–4/2, 1998, Smithsonian Migratory Bird Center, Panama (http://www.nationalzoo. Scholar
  44. Peixoto A.L. and Gentry A. 1990. Diversidade e composição florística da Mata de Tabuleiro na reserva florestal de Linhares (Espírito Santo, Brasil). Revista Brasileira de Botânica 13: 19–25.Google Scholar
  45. Peixoto A.L. and Silva I.M. 1997. Tabuleiro forests of northern Espírito Santo, southeastern Brazil. In: Davis S.D., Heywood V.H., Herrera-Macbryde O., Villa-Lobos J. and Hamilton A.C. (eds) Centres of Plant Diversity: A Guide and Strategy for their Conservation. The Americas, WWF and IUCN, London, pp. 369–372.Google Scholar
  46. Peres C.A. 2000. Effects of subsistence hunting on vertebrate community structure in Amazonian forest. Conservation Biology 14: 240–253.Google Scholar
  47. Phillips O.L. 1997. The changing ecology of tropical forests. Biodiversity and Conservation 6: 291–311.Google Scholar
  48. Power A.G. and Flecker A.S. 1998. Agroecosystems and biodiversity. Proc. 1st Int. Workshop on Sustainable Cocoa Growing, Panama, 3/30–4/2, 1998, Smithsonian Migratory Bird Center, Panama ( Scholar
  49. Prance G.T. 1987. Biogeography of neotropical plants. In: Whitmore T.C. and Prance G.T. (eds) Biogeography and Quaternary History in Tropical America. Clarendon Press, Oxford, UK, pp. 46–65.Google Scholar
  50. Redford K.H. 1992. The empty forest. Bioscience 42: 412–422.Google Scholar
  51. Reice S.R. 1994. Nonequilibrium determinants of biological community structure. American Scientist 82: 424–435.Google Scholar
  52. Rizzini C.M., Aduan R.E., Jesus R.M. and Garay I. 1997. Floresta pluvial de tabuleiro, Linhares, ES, Brasil, sistemas primários e secundários. Leandra 12: 54–76.Google Scholar
  53. Rolim S.G. and Nascimento H.E.M. 1997. Richness, diversity and species-abundance relationships of a tropical tree community in different samplings. Scientia Forestalis 52: 7–16.Google Scholar
  54. Rolim S.G., Couto H.T.Z. and Jesus R.M. 2001. Fluctuaciones temporales en la composición florística del bosque tropical atlántico. Biotropica 33: 12–22.Google Scholar
  55. Saatchi S., Agosti D., Alger K., Delabie J. and Musinski J. 2001. Examining fragmentation and loss of primary forest in the southern Bahian Atlantic forest of Brazil with radar imagery. Conservation Biology 15: 867–875.Google Scholar
  56. Sambuichi R.H.R. 2002. Fitossociologia e diversidade de espécies arbó reas em cabruca (mata atlântica raleada sobre plantação de cacau) na região sul da Bahia, Brasil. Acta Botânica Brasilica 16: 89–101.Google Scholar
  57. Sena Gomes A.R. 1992. Agrosilvicultural systems in southeastern Bahia. In: Anais do II Encontro Brasileiro de Economia e Planejamento Florestal, 30/09 a 04/10/1991. EMBRAPA/CNP Floresta. Curitiba, Paraná, pp. 109–122.Google Scholar
  58. Silva J.M.C. and Tabarelli M. 2000. Tree species impoverishment and the future flora of the Atlantic forest northeast Brazil. Nature 404: 72–74.Google Scholar
  59. Simberloff D. 1978. Use of rarefaction and related methods in ecology. In: Dickson K.L., Cairns Jr. J. and Livingston R.J. (eds) Biological Data in Water Pollution Assessment: Quantitative and Statistical Analyses, ASTM STP 652. American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 150–165.Google Scholar
  60. Suguio K., Martin L. and Dominguez J.L.M. 1982. Evolução da planície costeira do Rio Doce (ES) durante o quaternário: Influencia das flutuaçoes do nível do mar. In: Suguio K., De Meis M.R.M. and Tessler M.G. (eds) Anais do IV Simpósio do Quaternário no Brasil. Rio de Janeiro, Brazil, pp. 93–116.Google Scholar
  61. Swaine M.D., Hall J.B. and Alexander I.J. 1987. Tree population dynamics at Kade, Ghana (1968–1982). Journal of Tropical Ecology 3: 331–345.Google Scholar
  62. Tabarelli M. and Mantovani W. 1996. Remoção de sementes de Bertholletia excelsa (Lecythidaceae) por animais em uma floresta de terra firme na Amazônia central, Brasil. Revista Brasileira de Biologia 56: 755–760.Google Scholar
  63. Terborgh J. 1992. Maintenance of diversity in tropical forest. Biotropica 24: 283–292.Google Scholar
  64. Thomas W.W. and Carvalho A.M.V. 1997. Atlantic moist forest of Southern Bahia, south-eastern Brazil. In: Davis S.D., Heywood V.H., Herrera-Macbryde O., Villa-Lobos J. and Hamilton A.C. (eds), Centres of Plant Diversity: A Guide and Strategy for their Conservation, The Americas. WWF and IUCN, London, pp. 364–368.Google Scholar
  65. Thomas W.W., Carvalho A.M.V., Amorim A.M.A., Garrison J. and Arbeláez A.L. 1998. Plant endemism in two forests in southern Bahia, Brazil. Biodiversity and Conservation 7: 311–322.Google Scholar
  66. Vinha S.G., Silva L.A.M., Carvalho A.M., Pereira R.C. and Reyes-Zumeta H. 1983. Plantas Herbáceas, Epífitas, Arbustivas e Trepadeiras Associadas à Cultura do Cacaueiro. Centro de Pesquisas do Cacau, Itabuna, Ilhéus, Bahia, Brazil.Google Scholar
  67. Whitmore T.C. and Sayer J.A. 1992. Tropical Deforestation and Species Extinction. Chapman & Hall, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Samir G. Rolim
    • 1
  • Adriano G. Chiarello
    • 2
  1. 1.Reserva Natural da Vale do Rio DoceLinharesBrazil
  2. 2.Pontifícia Universidade Católica de Minas GeraisBelo HorizonteBrazil

Personalised recommendations