Context dependence in community composition of functional traits mediates freshwater fish invasion success in the Laurentian Great Lakes over time

Abstract

As the number of non-native species introductions continues to increase, the need for tools to predict potential invaders is a central focus in invasion ecology. Trait-based models are a popular method used to predict non-native species success; however, they have many challenges to overcome and often fail to address the role of propagule pressure in failed invasions. Due to a lack of data, many studies cannot incorporate failed invasions into their models examining the success of invaders. Here, we analyzed the relationship between the functional traits of non-native species, both successful and failed, and native species in the Laurentian Great Lakes over three time periods between 1870 and 2010. We only examined failed invasions where there was an environmental match and sufficient propagule pressure for establishment as determined through records of authorized stocking, allowing us to directly test the contribution of traits to invasion success. We evaluated whether nearest neighbor functional distance (NNFD), mean functional distance (MFD), lake, time, and functional traits predicted invasion success and impact using logistic regression models. Our results indicate that species with functional traits associated with r-selected life-history strategies were more likely to establish and predators were more likely to have high impact. While smaller NNFD and MFD values predicted establishment success, higher MFD values predicted high impact. This study examined the role of functional traits in invasion success and demonstrated the importance that a change in community context contributes to regulating invasion success.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data may be available from authors upon request.

References

  1. Azzurro E, Tuset VM, Lombarte A, Maynou F, Simberloff D, Rodríguez-Pérez A, Solé RV (2014) External morphology explains the success of biological invasions. Ecol Lett 17:1455–1463. https://doi.org/10.1111/ele.12351

    Article  PubMed  Google Scholar 

  2. Azzurro E, Maynou F, Belmaker J, Golani D, Crooks JA (2016) Lag times in Lessepsian fish invasion. Biol Invasions 18:2761–2772. https://doi.org/10.1007/s10530-016-1184-4

    Article  Google Scholar 

  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. R package version 1.1–23. https://doi.org/10.18637/jss.v067.i01

  4. Bernes MD, Coverdale TC (2013) An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 94:1937–1943. https://doi.org/10.1890/12-2150.1

    Article  Google Scholar 

  5. Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion success. Mol Ecol 24:1942–1953. https://doi.org/10.1111/mec.13075

    Article  PubMed  Google Scholar 

  6. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. https://doi.org/10.1016/j.tree.2011.03.023

    Article  PubMed  Google Scholar 

  7. Brown EH Jr (1972) Population biology of Alewives, Alosa pseudoharengus, in Lake Michigan, 1949–1970. J Fish Res Board Canada 29:477–500. https://doi.org/10.1139/f72-084

    Article  Google Scholar 

  8. Cadotte MW, Campbell SE, Li S, Sodhi DS, Mandrak NE (2018) Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev Plant Biol 69:661–684. https://doi.org/10.1146/annurev-arplant-042817-040339

    CAS  Article  PubMed  Google Scholar 

  9. Caley P, Groves RH, Barker R (2008) Estimating invasion success of introduced plants. Divers Distrib 14:196–203. https://doi.org/10.1111/j.1472-4642.2007.00440.x

    Article  Google Scholar 

  10. Campbell SE, Mandrak NE (2017) Dissecting spatiotemporal patterns of functional diversity through the lens of Darwin’s naturalization conundrum. Ecol Evol 7:3861–3869. https://doi.org/10.1002/ece3.2933

    Article  PubMed  PubMed Central  Google Scholar 

  11. Campbell SE, Mandrak NE (2019) Temporal dynamics of taxonomic homogenization in the fish communities of the Laurentian Great Lakes. Divers Distrib 25:1870–1878. https://doi.org/10.1111/ddi.12986

    Article  Google Scholar 

  12. Catford JA, Smith AL, Wragg PD, Clark AT, Kosmala M, Cavender-Bares J, Reich PB, Tilman D (2019) Traits linked with species invasiveness and community invasibility vary with time, stage, and indicator of invasion in a long-term grassland experiment. Ecol Lett 22:593–604. https://doi.org/10.1111/ele.13220

    Article  PubMed  Google Scholar 

  13. Claramunt RM, Madenjian CP, Clapp DF (2013) Pacific salmonines in the Great Lakes Basin. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes policy and management, 2nd edn. Michigan State University Press, Michigan, pp 609–650

    Google Scholar 

  14. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037. https://doi.org/10.1007/s10530-005-3735-y

    Article  Google Scholar 

  15. Coker GA, Portt CB, Minns CK (2001) Morphological and ecological characteristics of Canadian freshwater fishes. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2554

  16. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. https://doi.org/10.1890/07-1134.1

    Article  Google Scholar 

  17. Crawford SS (2001) Salmonine introductions to the Laurentian Great Lakes: an historical review and evaluation of ecological effects, Canadian Special Publication of Fisheries and Aquatic Sciences 132. NRC Research Press, Ottawa, p 205

    Google Scholar 

  18. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion1. Écoscience 12:316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1

    Article  Google Scholar 

  19. Cucherousset J, Olden JD (2011) Ecological impacts of nonnative freshwater fishes. Fisheries 36:215–230. https://doi.org/10.1080/03632415.2011.574578

    Article  Google Scholar 

  20. D’Antonio CM, Kark S (2002) Impacts and extent of biotic invasions in terrestrial ecosystems. Trends Ecol Evol 17:P202–P204. https://doi.org/10.1016/S0169-5347(02)02454-0

    Article  Google Scholar 

  21. Dextrase A, Mandrak NE (2006) Impacts of invasive alien species on freshwater fauna at risk in Canada. Biol Invasions 8:13–24. https://doi.org/10.1007/s10530-005-0232-2

    Article  Google Scholar 

  22. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. https://doi.org/10.1073/pnas.0704716104

    Article  PubMed  Google Scholar 

  23. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3:2958–2975. https://doi.org/10.1002/ece3.601

    Article  PubMed  PubMed Central  Google Scholar 

  24. Divíšek J, Chytry M, Beckage B, Gotelli NJ, Lososová Z, Pyšek P, Richardson DM, Molofsky J (2018) Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat Commun 9:4631. https://doi.org/10.1038/s41467-018-06995-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Duarte CM, Alcaraz M (1989) To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia 80:401–404. https://doi.org/10.1007/BF00379043

    Article  PubMed  Google Scholar 

  26. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  27. Essl F, Mang T, Moser D (2012) Ancient and recent alien species in temperate forests: steady state and time lags. Biol Invasions 14:1331–1342. https://doi.org/10.1007/s10530-011-0156-y

    Article  Google Scholar 

  28. Gallien L, Carboni M (2017) The community ecology of invasive species: where are we and what’s next? Ecography 40:335–352. https://doi.org/10.1111/ecog.02446

    Article  Google Scholar 

  29. Gallien L, Zurell D, Zimmermann NE (2018) Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. Ecol Evol 8:2171–2181. https://doi.org/10.1002/ece3.3855

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871. https://doi.org/10.2307/2528823

    Article  Google Scholar 

  31. Gozlan RE, Britton JR, Cowx I, Copp GH (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786. doi:https://doi.org/10.1111/j.1095-8649.2010.02566.x

    Article  Google Scholar 

  32. Helfman GS (2007) Fish conservation. Island Press, Washington

    Google Scholar 

  33. Howeth JG, Gantz CA, Angermeier PL, Frimpong EA, Hoff MH, Keller RP, Mandrak NE, Marchetti MP, Olden JD, Romagosa CM, Lodge DM (2016) Predicting invasiveness of species in trade: climate match, trophic guild and fecundity influence establishment and impact of non-native freshwater fishes. Divers Distrib 22:148–160. https://doi.org/10.1111/ddi.12391

    Article  Google Scholar 

  34. Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S, Diaz-Pardo E, Hendrickson DA, Lyons J, Mandrak NE, McCormick F, Nelson JS, Platania SP, Porter BA, Renaud CB, Schmitter-Soto JJ, Taylor EB, Warren ML Jr (2008) Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33:372–407. https://doi.org/10.1577/1548-8446-33.8.372

    Article  Google Scholar 

  35. Jiang L, Tan J, Pu Z (2010) An experimental test of Darwin’s naturalization hypothesis. Am Nat 175:415–423. https://doi.org/10.1086/650720

    Article  PubMed  Google Scholar 

  36. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. https://doi.org/10.1016/S0169-5347(01)02101-2

    Article  PubMed  Google Scholar 

  37. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236. https://doi.org/10.1126/science.1075753

    CAS  Article  PubMed  Google Scholar 

  38. Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek K, Prach M, Rejmánek M, Wade M (eds) Plant invasions – general aspects and special problems. SPB Academic Publishing, Amsterdam

    Google Scholar 

  39. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  40. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version, vol 1, pp 0–12

  41. Larkin DJ (2012) Lengths and correlates of lag phases in upper-Midwest plant invasions. Biol Invasions 14:827–838. https://doi.org/10.1007/s10530-011-0119-3

    Article  Google Scholar 

  42. Laureto LMO, Cianciaruso MV, Samia DSM (2015) Functional diversity: an overview of its history and applicability. Nat Conserv 13:112–116. https://doi.org/10.1016/j.ncon.2015.11.001

    Article  Google Scholar 

  43. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. https://doi.org/10.1111/j.1461-0248.2004.00657.x

    Article  Google Scholar 

  44. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. https://doi.org/10.1016/j.tree.2005.02.004

    Article  PubMed  Google Scholar 

  45. Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion ecology, 2nd edn. Wiley, New York

    Google Scholar 

  46. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  47. Mandrak NE (1989) Potential invasion of the Great Lakes by fish species associated with climatic warming. J Great Lakes Res 15:306–316. https://doi.org/10.1016/S0380-1330(89)71484-2

    Article  Google Scholar 

  48. Mandrak NE, Cudmore B (2010) The fall of native fishes and the rise of non-native fishes in the Great Lakes basin. Aquat Ecosyst Health Manage 13:255–268. https://doi.org/10.1080/14634988.2010.507150

    Article  Google Scholar 

  49. Mandrak NE, Cudmore B (2013) Fish species at risk and non-native fishes in the Great Lakes basin: Past, present, and future. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes policy and management, 2nd edn. Michigan State University Press, Michigan, pp 167–202

    Google Scholar 

  50. Marx HE, Giblin DE, Dunwiddie PW, Tank DC (2016) Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers Distrib 22:318–331. https://doi.org/10.1111/ddi.12401

    Article  Google Scholar 

  51. Miller RR, Williams JD, Williams JE (1989) Extinctions of North American fishes during the past century. Fisheries 14:22–38. https://doi.org/10.1577/1548-8446(1989)014<0022:EONAFD>2.0.CO;2

    Article  Google Scholar 

  52. Moyle PB, Light T (1996) Fish invasions in California: do abiotic factors determine success? Ecology 77:1666–1670. https://doi.org/10.2307/2265770

    Article  Google Scholar 

  53. Moyle PB, Marchetti MP (2006) Predicting invasion success: freshwater fishes in California as a model. Bioscience 56:515–524. https://doi.org/10.1641/0006-3568(2006)56[515:PISFFI]2.0.CO;2)56[515:PISFFI]2.0.CO;2

    Article  Google Scholar 

  54. Norkko J, Reed DC, Timmermann K, Norkko A, Gustafsson BG, Bondsdorff E, Slomp CP, Carstensen J, Conley DJ (2012) A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biol 18:422–434. https://doi.org/10.1111/j.1365-2486.2011.02513.x

    Article  Google Scholar 

  55. Ordonez A (2014) Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology 95:1191–1202. https://doi.org/10.1890/13-1002.1

    Article  PubMed  Google Scholar 

  56. Pearson DE, Callaway RM (2003) Indirect effects of host-specific biological control agents. Trends Ecol Evol 18:456–461. https://doi.org/10.1016/S0169-5347(03)00188-5

    Article  Google Scholar 

  57. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

    Article  PubMed  Google Scholar 

  58. Podani J (1999) Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48:331–340. https://doi.org/10.2307/1224438

    Article  Google Scholar 

  59. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  60. Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meldown” occurring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525. https://doi.org/10.1139/f01-178

    Article  Google Scholar 

  61. Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784. https://doi.org/10.1111/j.1461-0248.2004.00642.x

    Article  Google Scholar 

  62. Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939. https://doi.org/10.1007/s10530-005-5103-3

    Article  Google Scholar 

  63. Roth BM, Mandrak NE, Hrabik T, Sass GG, Peters J (2013) Fishes and decapod crustaceans of the Great Lakes basin. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes policy and management, 2nd edn. Michigan State University Press, Michigan, pp 105–257

    Google Scholar 

  64. Ruesink JL (2005) Global analysis of factors affecting the outcome of freshwater fish introductions. Conserv Biol 19:1883–1893. https://doi.org/10.1111/j.1523-1739.2005.00267.x-i1

    Article  Google Scholar 

  65. Salo P, Korpimäki E, Banks PB, Nordström M, Dickman CR (2007) Alien predators are more dangerous than native predators to prey populations. Proc R Soc B Biol Sci 274:1237–1243. https://doi.org/10.1098/rspb.2006.0444

    Article  Google Scholar 

  66. Seabloom EW, Williams JW, Slayback D, Stoms DM, Viers JH, Dobson AP (2006) Human impacts, plant invasion, and imperiled plant species in California. Ecol Appl 16:1338–1350. https://doi.org/10.1890/1051-0761(2006)016[1338:HIPIAI]2.0.CO;

    Article  PubMed  Google Scholar 

  67. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  68. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. https://doi.org/10.1023/A:1010086329619

    Article  Google Scholar 

  69. Smith SH (1972) Factors of ecological succession in oligotrophic fish communities of the Laurentian Great Lakes. J Fish Res Board Can 29:717–730. https://doi.org.myaccess.library.utoronto.ca/https://doi.org/10.1139/f72-117

    Article  Google Scholar 

  70. Snyder RJ, Burlakova LE, Karatayev AY, MacNeill DB (2014) Updated invasion risk assessment for Ponto-Caspian fishes to the Great Lakes. J Great Lakes Res 40:360–369. https://doi.org/10.1016/j.jglr.2014.03.009

    Article  Google Scholar 

  71. Strauss SY, Webb CO, Salamin N (2005) Exotic taxa less related to native species are more invasive. Proc Natl Acad Sci USA 103:5841–5845. https://doi.org/10.1073/pnas.0508073103

    CAS  Article  Google Scholar 

  72. Thorpe JE, Miles MS, Keay DS (1984) Developmental rate, fecundity and egg size in Atlantic salmon, Salmo salar L. Aquaculture 43:289–305. https://doi.org/10.1016/0044-8486(84)90030-9

    Article  Google Scholar 

  73. Thuiller W, Gallien L, Boulangeat I, De Bello F, Münkemüller T, Roquet C, Lavergne S (2010) Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers Distrib 16:461–475. https://doi.org/10.1111/j.1472-4642.2010.00645.x

    Article  Google Scholar 

  74. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66. https://doi.org/10.1038/371065a0

    Article  Google Scholar 

  75. Vermeij GJ (1996) An agenda for invasion biology. Biol Conserv 78:3–9. https://doi.org/10.1016/0006-3207(96)00013-4

    Article  Google Scholar 

  76. Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB, Cadotte MW, Livingstone SW, Mouillot D (2017) Functional rarity: the ecology of outliers. Trends Ecol Evol 32:356–367. https://doi.org/10.1016/j.tree.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  77. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218. https://doi.org/10.1890/05-0427

    Article  Google Scholar 

  78. Wehrly K, Wang L, Infante D, Joseph C, Cooper A, Stanfield L, Rutherford ES (2013) Landscape change and its influences on aquatic habitats and fisheries in the Great Lakes basin. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes policy and management, 2nd edn. Michigan State University Press, Michigan, pp 81–103

    Google Scholar 

  79. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615. https://doi.org/10.2307/1313420

    Article  Google Scholar 

  80. Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568. https://doi.org/10.1007/s10530-005-5849-7

    Article  Google Scholar 

  81. Zenni RD, Nuñez MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801–815. https://doi.org/10.1111/j.1600-0706.2012.00254.x

    Article  Google Scholar 

  82. Zielinski DP, Freiburger C (in press) Advances in fish passage in the Great Lakes basin. J Great Lakes Res. https://doi.org/10.1016/j.jglr.2020.03.008

Download references

Acknowledgements

We thank Robert Green, Kevin Loftus, and Christopher Wilson of the Ontario Ministry of Natural Resources and Forestry for providing stocking data. Anjali Bapat, UTSC, conducted the climate match analyses. Funding was provided by a Natural Sciences and Engineering Research Council Discovery Grant to NEM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sara E. Campbell.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 554 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Campbell, S.E., Mandrak, N.E. Context dependence in community composition of functional traits mediates freshwater fish invasion success in the Laurentian Great Lakes over time. Biol Invasions (2021). https://doi.org/10.1007/s10530-021-02483-x

Download citation

Keywords

  • Non‐native success
  • Historical stocking
  • Propagule pressure
  • Biotic interactions