Unraveling the ecological and evolutionary impacts of a plant invader on the pollination of a native plant

Abstract

Interactions between a native plant species and its pollinators, herbivores, or microbiome can be affected by the presence of non-native plant species. Non-native plant species are altering plant-pollinator interactions, yet we know little about how these non-native species influence natural selection. In addition, year-to-year variation in flowering could influence the impacts of non-native species on reproductive success in native plants and the strength and direction of pollinator-mediated selection. We examined whether the presence of the highly invasive plant Linaria vulgaris influenced average pollinator visitation, species composition of floral visitors, or pollinator-mediated selection in the native Penstemon strictus. In the field, we conducted small scale L. vulgaris inflorescence removals, that were repeated through 3 years. Pollinator-mediated selection on the floral trait of platform length was examined by determining the relationships between platform length and visitation, between visitation and seed production, and by calculating net selection based on seed production. We found that the presence of L. vulgaris on a small spatial scale facilitated pollinator visitation rates to P. strictus but did not influence pollinator-mediated selection on platform length. Pollinator visitation varied across years, as did the relationship between seed production and pollinator visitation, and the relationship between pollinator visitation and platform length. Although components of selection varied across years, no net selection on platform length was detected in any of the 3 years. Our results show how the presence of an invasive plant and year-to-year variation in plant-pollinator interactions affect the pollination and components of pollinator-mediated selection in native plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Data is available in Dryad https://datadryad.org/stash/dataset/doi:10.7280/D1JM40.

References

  1. Albor C, García-Franco JG, Parra-Tabla V et al (2019) Taxonomic and functional diversity of the co-flowering community differentially affect Cakile edentula pollination at different spatial scales. J Ecol 107:2167–2181. https://doi.org/10.1111/1365-2745.13183

    Article  Google Scholar 

  2. Albrecht M, Ramis MR, Traveset A (2016) Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol Invasions 18:1801–1812. https://doi.org/10.1007/s10530-016-1121-6

    Article  Google Scholar 

  3. Arnold SJ, Wade MJ (1984) On the measurement of natural and sexual selection. Evolution 38:709–719. https://doi.org/10.2307/2408383

    Article  PubMed  Google Scholar 

  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  5. Beans CM, Roach DA (2015) An invasive plant alters pollinator-mediated phenotypic selection on a native congener. Am J Bot 102:50–57. https://doi.org/10.3732/ajb.1400385

    Article  PubMed  Google Scholar 

  6. Benitez-Vieyra S, Glinos E, Medina AM, Cocucci AA (2012) Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae). Evol Ecol 26:1451–1468. https://doi.org/10.1007/s10682-012-9565-3

    Article  Google Scholar 

  7. Berthon K (2015) How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol Invasions 17:2199–2211. https://doi.org/10.1007/s10530-015-0874-7

    Article  Google Scholar 

  8. Bezemer TM, Harvey JA, Cronin JT (2014) Response of native insect communities to invasive plants. Annu Rev Entomol 59:119–141. https://doi.org/10.1146/annurev-ento-011613-162104

    CAS  Article  PubMed  Google Scholar 

  9. Bjerknes AL, Totland Ø, Hegland SJ, Nielsen A (2007) Do alien plant invasions really affect pollination success in native plant species? Biol Conserv 138:1–12. https://doi.org/10.1016/j.biocon.2007.04.015

    Article  Google Scholar 

  10. Blankinship JC, Meadows MW, Lucas RG, Hart SC (2014) Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada. Water Resour Res 50:1448–1456. https://doi.org/10.1002/2013WR014541

    Article  Google Scholar 

  11. Brown BJ, Mitchell RJ (2001) Competition for pollination: effects of pollen of an invasive plant on seed set of a native congener. Oecologia 129:43–49. https://doi.org/10.1007/s004420100700

    Article  PubMed  Google Scholar 

  12. Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83:2328–2336. https://doi.org/10.2307/3072063

    Article  Google Scholar 

  13. Bruckman D, Campbell DR (2016) Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion. Am J Bot 103:1458–1465. https://doi.org/10.3732/ajb.1600153

    CAS  Article  PubMed  Google Scholar 

  14. Burkle LA, Irwin RE, Newman DA (2007) Predicting the effects of nectar robbing on plant reproduction: implications of pollen limitation and plant mating system. Am J Bot 94:1935–1943. https://doi.org/10.3732/ajb.94.12.1935

    Article  PubMed  Google Scholar 

  15. Callaway RM, Ridenour WM, Laboski T et al (2005) Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol 93:576–583. https://doi.org/10.1111/j.1365-2745.2005.00994.x

    Article  Google Scholar 

  16. Campbell DR (1985) Pollinator sharing and seed set of Stellaria pubera: competition for pollination. Ecology 66:544–553. https://doi.org/10.2307/1940403

    Article  Google Scholar 

  17. Campbell DR, Motten AF (1985) The mechanism of competition for pollination between two forest herbs. Ecology 66:554–563. https://doi.org/10.2307/1940404

    Article  Google Scholar 

  18. Campbell DR, Waser NM, Price MV et al (1991) Components of phenotypic selection: pollen export and flower corolla width in Ipomopsis aggregata. Evolution 45:1458–1467. https://doi.org/10.1111/j.1558-5646.1991.tb02648.x

    Article  PubMed  Google Scholar 

  19. Campbell DR, Waser NM, Price MV (1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology 77:1463–1472. https://doi.org/10.2307/2265543

    Article  Google Scholar 

  20. Campbell DR, Brody AK, Price MV et al (2017) Is plant fitness proportional to seed set? An experiment and a spatial model. Am Nat 190:818–827. https://doi.org/10.1086/694116

    Article  PubMed  Google Scholar 

  21. Caruso CM (2000) Competition for pollination influences selection on floral traits of Ipomopsis aggregata. Evolution 54:1546–1557. https://doi.org/10.1111/j.0014-3820.2000.tb00700.x

    CAS  Article  PubMed  Google Scholar 

  22. Castellanos MC, Wilson P, Thomson JD (2003) Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57:2742–2752. https://doi.org/10.1111/j.0014-3820.2003.tb01516.x

    Article  PubMed  Google Scholar 

  23. Castellanos MC, Wilson P, Thomson JD (2004) “Anti-bee” and “pro-bird” changes during the evolution of hummingbird pollination in Penstemon flowers. J Evol Biol 17:876–885. https://doi.org/10.1111/j.1420-9101.2004.00729.x

    CAS  Article  PubMed  Google Scholar 

  24. Charlebois JA, Sargent RD (2017) No consistent pollinator-mediated impacts of alien plants on natives. Ecol Lett 20:1479–1490

    Article  Google Scholar 

  25. Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00368

    Article  Google Scholar 

  26. Fenster CB, Dudash MR (2001) Spatiotemporal variation in the role of hummingbirds as pollinators of Silene virginica. Ecology 82:844–851. https://doi.org/10.2307/2680202

    Article  Google Scholar 

  27. Fishbein M, Venable DL (1996) Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77:1061–1073. https://doi.org/10.2307/2265576

    Article  Google Scholar 

  28. Fishman L, Wyatt R (1999) Pollinator-mediated competition, reproductive character displacement, and the evolution of selfing in Arenaria uniflora (Caryophyllaceae). Evolution 53:1723–1733. https://doi.org/10.2307/2640435

    Article  PubMed  Google Scholar 

  29. Flanagan RJ, Mitchell RJ, Knutowski D, Karron JD (2009) Interspecific pollinator movements reduce pollen deposition and seed production in Mimulus ringens (Phrymaceae). Am J Bot 96:809–815. https://doi.org/10.3732/ajb.0800317

    Article  PubMed  Google Scholar 

  30. Galen C (1989) Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 43:882–890. https://doi.org/10.2307/2409315

    Article  PubMed  Google Scholar 

  31. Goergen EM, Leger EA, Espeland EK (2011) Native perennial grasses show evolutionary response to Bromus tectorum (cheatgrass) invasion. PLoS One 6:e18145. https://doi.org/10.1371/journal.pone.0018145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Gómez JM (2000) Phenotypic selection and response to selection in Lobularia maritima: importance of direct and correlational components of natural selection. J Evol Biol 13:689–699. https://doi.org/10.1046/j.1420-9101.2000.00196.x

    Article  Google Scholar 

  33. Grant PR, Grant R (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. https://doi.org/10.1126/science.1070315

    CAS  Article  PubMed  Google Scholar 

  34. Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545. https://doi.org/10.1111/j.1469-8137.2009.02914.x

    Article  PubMed  Google Scholar 

  35. Hegland SJ, Grytnes J-A, Totland Ø (2009) The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol Res 24:929–936. https://doi.org/10.1007/s11284-008-0572-3

    Article  Google Scholar 

  36. Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125. https://doi.org/10.1111/j.1095-8312.1988.tb00461.x

    Article  Google Scholar 

  37. Horvitz CC, Schemske DW (1990) Spatiotemporal variation in insect mutualists of a neotropical herb. Ecology 71:1085–1097. https://doi.org/10.2307/1937377

    Article  Google Scholar 

  38. Iwao K, Rausher MD (1997) Evolution of plant resistance to multiple herbivores: quantifying diffuse coevolution. Am Nat 149:316–335. https://doi.org/10.1086/285992

    Article  Google Scholar 

  39. Jakobsson A, Padrón B (2014) Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes? Oecologia 174:217–226. https://doi.org/10.1007/s00442-013-2756-y

    Article  PubMed  Google Scholar 

  40. Kingsolver JG, Hoekstra HE, Hoekstra JM et al (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261. https://doi.org/10.1086/319193

    CAS  Article  PubMed  Google Scholar 

  41. Lau JA (2008) Beyond the ecological: biological invasions alter natural selection on a native plant species. Ecology 89:1023–1031. https://doi.org/10.1890/06-1999.1

    Article  PubMed  Google Scholar 

  42. Lau JA (2012) Evolutionary indirect effects of biological invasions. Oecologia 170:171–181. https://doi.org/10.1007/s00442-012-2288-x

    Article  PubMed  Google Scholar 

  43. Molina-Montenegro MA, Badano EI, Cavieres LA (2008) Positive interactions among plant species for pollinator service: assessing the ‘magnet species’ concept with invasive species. Oikos 117:1833–1839. https://doi.org/10.1111/j.0030-1299.2008.16896.x

    Article  Google Scholar 

  44. Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728. https://doi.org/10.1111/j.1461-0248.2009.01319.x

    Article  PubMed  Google Scholar 

  45. Oduor AMO (2013) Evolutionary responses of native plant species to invasive plants: a review. New Phytol 200:986–992. https://doi.org/10.1111/nph.12429

    Article  PubMed  Google Scholar 

  46. Ogilvie JE, Griffin SR, Gezon ZJ et al (2017) Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol Lett 20:1507–1515. https://doi.org/10.1111/ele.12854

    Article  PubMed  Google Scholar 

  47. Ogle D, Peterson S, St. John L (2013) Plant guide for Rocky Mountain penstemon (Penstemon strictus). USDA-Natural Resources Conservation Service, Plant Materials Center, Aberdeen

    Google Scholar 

  48. Price MV, Waser NM, Irwin RE et al (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116. https://doi.org/10.1890/04-1274

    Article  Google Scholar 

  49. Rafferty NE, Ives AR (2012) Pollinator effectiveness varies with experimental shifts in flowering time. Ecology 93:803–814. https://doi.org/10.1890/11-0967.1

    Article  PubMed  PubMed Central  Google Scholar 

  50. R Core Team (2018) R: a language and environment for statistical computing

  51. Recart W, Ottoson B, Campbell DR (2019) Water influences how seed production responds to conspecific and heterospecific pollen. Am J Bot 106:1–9. https://doi.org/10.1002/ajb2.1273

    Article  Google Scholar 

  52. Sahli HF, Conner JK (2007) Visitation, effectiveness, and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brasicaceae). Am J Bot 94:203–209. https://doi.org/10.3732/ajb.94.2.203

    Article  PubMed  Google Scholar 

  53. Saner MA, Clements DR, Hall MR et al (1995) The biology of Canadian weeds. 105. Linaria vulgaris Mill. Can J Plant Sci 75:525–537. https://doi.org/10.4141/cjps76-052

    Article  Google Scholar 

  54. Stanton ML, Snow AA, Handel SN (1986) Floral evolution: attractiveness to pollinators increases male fitness. Science 232:1625–1627. https://doi.org/10.1126/science.232.4758.1625

    CAS  Article  PubMed  Google Scholar 

  55. Thomson JD (1996) Trapline foraging by bumblebees: I. Persistence of flight-path geometry. Behav Ecol 7:158–164. https://doi.org/10.1093/beheco/7.2.158

    Article  Google Scholar 

  56. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216. https://doi.org/10.1016/j.tree.2006.01.006

    Article  PubMed  Google Scholar 

  57. USDA, NRCS (2020) The PLANTS database. In: National plant data team, Greensboro, NC, 27401-4901, USA. http://plants.usda.gov. Accessed 5 Mar 2020

  58. Waser NM, Price MV (2016) Drought, pollen and nectar availability, and pollination success. Ecology 97:1400–1409. https://doi.org/10.1890/15-1423.1

    Article  PubMed  Google Scholar 

  59. Wassink E, Caruso CM (2013) Effect of coflowering Mimulus ringens on phenotypic selection on floral traits of gynodioecious Lobelia siphilitica. Botany 91:745–751. https://doi.org/10.1139/cjb-2013-0112

    Article  Google Scholar 

  60. Wilson P, Castellanos MC, Hogue JN et al (2004) A multivariate search for pollination syndromes among Penstemons. Oikos 104:345–361. https://doi.org/10.1111/j.0030-1299.2004.12819.x

    Article  Google Scholar 

  61. Yang CF, Wang QF, Guo YH (2013) Pollination in a patchily distributed lousewort is facilitated by presence of a co-flowering plant due to enhancement of quantity and quality of pollinator visits. Ann Bot 112:1751–1758. https://doi.org/10.1093/aob/mct228

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zung JL, Forrest JRK, Castellanos MC, Thomson JD (2015) Bee- to bird-pollination shifts in Penstemon: effects of floral-lip removal and corolla constriction on the preferences of free-foraging bumble bees. Evol Ecol 29:341–354. https://doi.org/10.1007/s10682-014-9716-9

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ashley Morse, Alexandra Faidiga, M. Kate Gallagher, Hannah Clements, Paula Sosenski, Victoria Luizzi, Victor Prestinary, Amanda Barth and Judith Trunschke for aiding with data collection, and M. Kate Gallagher, Heather Briggs, Steve Weller, John Powers, and two anonymous reviewers for providing feedback on this manuscript. We thank the Rocky Mountain Biological Laboratory for providing access to facilities and instrumentation and the Crested Butte Land Trust for access to the field sites. This work was supported by the Rocky Mountain Biological Laboratory Graduate Student Research Fellowships, Colorado Mountain Club Foundation Student Research Awards, Botanical Society of America Graduate Student Research Award, National Science Foundation Graduate Research Fellowship under Grant No. [DGE-1321846], and the University of California Eugene Cota-Robles Fellowship.

Funding

This work was supported by the Rocky Mountain Biological Laboratory Graduate Student Research Fellowships, Colorado Mountain Club Foundation Student Research Awards, Botanical Society of America Graduate Student Research Award, National Science Foundation Graduate Research Fellowship under Grant No. [DGE-1321846], and the University of California Eugene Cota-Robles Fellowship.

Author information

Affiliations

Authors

Contributions

WRG developed the questions; WRG and DRC contributed to the experimental design; WRG conducted fieldwork experiments and collected data; WRG and DRC contributed to the data analysis and interpretation; WRG led the writing of the manuscript, with revisions by DRC. Both authors gave final approval for publication.

Corresponding author

Correspondence to Wilnelia Recart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 265 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Recart, W., Campbell, D.R. Unraveling the ecological and evolutionary impacts of a plant invader on the pollination of a native plant. Biol Invasions (2021). https://doi.org/10.1007/s10530-021-02457-z

Download citation

Keywords

  • Bombus
  • Competition for pollination
  • Invasive
  • Linaria vulgaris
  • Penstemon strictus
  • Pollinator visitation