Skip to main content

Advertisement

Log in

Global invasion in progress: modeling the past, current and potential global distribution of the common myna

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Determining the distribution and potential ranges of detrimental invasive species has become an essential task in light of their impacts on the environment. However, this effort has been challenging, especially for global invaders. Our goal was to test whether potential ranges of global invaders can be predicted, and examine the factors that shape them by studying the past, current and potential global distribution of a broad-ranging avian invader. We used the common myna (Acridotheres tristis), one of the most broad-ranging avian invaders whose range is currently expanding globally, as a case study. We collected the first detailed global database of global occurrence (n = 7990) of the common myna over the past 150 years, including records from the native and the introduced ranges. We employed MaxEnt to construct species distribution models (SDM) for the global database using climatic, anthropogenic and environmental factors. We provide evidence that invasive species distributions can be predicted from older records, and that model accuracy requires integrating data from the introduced range. This first comprehensive distribution for an avian invader indicates an extensive expansion in the common myna global distribution, with the potential of large areas worldwide being at risk of common myna invasion, thus threatening local biodiversity globally. Range expansion has been facilitated by proximity to urbanized areas and broad environmental tolerance. Our findings reflect the major role of anthropogenic impact in increasing the global distribution of avian invaders and emphasize the value of using SDMs to inform global management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ancillotto L, Strubbe D, Menchetti M, Mori E (2016) An overlooked invader? Ecological niche, invasion success and range dynamics of the Alexandrine parakeet in the invaded range. Biol Invasions 18:583–595. https://doi.org/10.1007/s10530-015-1032-y

    Article  Google Scholar 

  • Baker AJ, Moeed A (1987) Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution (N Y) 41:525–538

    Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W et al (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420. https://doi.org/10.1111/j.1472-4642.2008.00547.x

    Article  Google Scholar 

  • Blackburn TM, Cassey P, Lockwood JL (2009) The role of species traits in the establishment success of exotic birds. Glob Change Biol 15:2852–2860. https://doi.org/10.1111/j.1365-2486.2008.01841.x

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x

    Article  CAS  PubMed  Google Scholar 

  • Buckland S, Cole NC, Aguirre-Gutiérrez J et al (2014) Ecological effects of the invasive giant madagascar day gecko on endemic Mauritian geckos: applications of binomial-mixture and species distribution models. PLoS ONE. https://doi.org/10.1371/journal.pone.0088798

    Article  PubMed  PubMed Central  Google Scholar 

  • Canning G (2011) Eradication of the invasive common myna, Acridotheres tristis, from Fregate Island, Seychelles. Phelsuma 19:43–53

    Google Scholar 

  • Charter M, Izhaki I, Ben Mocha Y, Kark S (2016) Nest-site competition between invasive and native cavity nesting birds and its implication for conservation. J Environ Manag 181:129–134. https://doi.org/10.1016/j.jenvman.2016.06.021

    Article  Google Scholar 

  • Cramp S, Perrins CM (1994) Handbook of the birds of Europe, the Middle East and Africa. The birds of the western Palearctic vol VIII: crows to finches. Oxford University Press, Oxford

    Google Scholar 

  • Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263. https://doi.org/10.1111/j.1365-294X.2010.04550.x

    Article  CAS  PubMed  Google Scholar 

  • Crooks KR, Suarez AV, Bolger DT (2004) Avian assemblages along a gradient of urbanization in a highly fragmented landscape. Biol Conserv 115:451–462

    Article  Google Scholar 

  • Crystal-Ornelas R, Lockwood JL, Cassey P, Hauber ME (2017) The establishment threat of the obligate brood-parasitic Pin-tailed Whydah (Vidua macroura) in North America and the Antilles. Condor 119:449–458. https://doi.org/10.1650/CONDOR-16-150.1

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K et al (2000) Fluctuating resources in plant communities: fluctuating resources a general of invasibility theory. J Ecol 88:528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • De Marco P, Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

    Article  CAS  PubMed  Google Scholar 

  • Elith J (2013) Predicting distributions of invasive species. 1–28

  • Elith J (2015) Predicting distributions of invasive species. In: Walshe TR, Robinson A, Nunn M, Burgman MA (eds) Risk-based decisions for biological threats. Cambridge University Press, Cambridge

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Feare CJ (2010) The use of Starlicide ® in preliminary trials to control invasive common myna Acridotheres tristis populations on St Helena and Ascension islands, Atlantic Ocean. Conserv Evid 7:52–61

    Google Scholar 

  • Feare C, Craig A (1999) Common myna, Acridotheres tristis. In: Starlings and mynas. Princeton University Press, Princeton, pp 157–160

    Google Scholar 

  • Forys EA, Allen CR (1999) Biological invasions and deletions: community change in south Florida. Biol Conserv 87:341–347. https://doi.org/10.1016/S0006-3207(98)00073-1

    Article  Google Scholar 

  • Fraser D, Aguilar G, Nagle W et al (2015) The house crow (Corvus splendens): a threat to New Zealand? ISPRS Int J Geo-Inf 4:725–740. https://doi.org/10.3390/ijgi4020725

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH et al (2010) Predicting potential distributions of invasive species: Where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590. https://doi.org/10.1007/s10530-007-9154-5

    Article  Google Scholar 

  • Graham CH, Ferrier S, Huettman F et al (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  Google Scholar 

  • Grarock K, Tidemann CR, Wood J, Lindenmayer DB (2012) Is it Benign or is it a pariah? Empirical evidence for the impact of the common myna (Acridotheres tristis) on Australian birds. PLoS ONE. https://doi.org/10.1371/journal.pone.0040622

    Article  PubMed  PubMed Central  Google Scholar 

  • Grarock K, Tidemann CR, Wood JT, Lindenmayer DB (2014) Are invasive species drivers of native species decline or passengers of habitat modification? A case study of the impact of the common myna (Acridotheres tristis) on Australian bird species. Austral Ecol 39:106–114. https://doi.org/10.1111/aec.12049

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Hanberry BB, He HS (2013) Prevalence, statistical thresholds, and accuracy assessment for species distribution models. Web Ecol 13:13–19. https://doi.org/10.5194/we-13-13-2013

    Article  Google Scholar 

  • Hayes MA, Cryan PM, Wunder MB (2015) Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development. PLoS ONE 10:1–20. https://doi.org/10.1371/journal.pone.0132599

    Article  CAS  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo: species distribution modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

  • Holzapfel C, Levin N, Hatzofe O, Kark S (2006) Colonisation of the Middle East by the invasive Common Myna Acridotheres tristis L., with special reference to Israel. Sandgrouse 28:44

    Google Scholar 

  • Hone J (1978) Introduction and spread of the common myna in New South Wales. Emu-Austral Ornithol 78:227–230

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Jiménez-Valverde A, Decae AE, Arnedo MA (2011a) Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. J Biogeogr 38:1213–1223. https://doi.org/10.1111/j.1365-2699.2010.02465.x

    Article  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J et al (2011b) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797. https://doi.org/10.1007/s10530-011-9963-4

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Khoury F, Alshamlih M (2015) First evidence of colonization by common myna Acridotheres tristis in Jordan, 2013–2014. Sandgrouse 37:22–24

    Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Ecol Evol 16:199–204

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379. https://doi.org/10.1111/ddi.12096

    Article  Google Scholar 

  • Kurdila J (1988) The introduction of exotic species into the United States: there goes the neighborhood. Boston Coll Environ Aff Law Rev 16:95

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop) 28:385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6:337–348

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910. https://doi.org/10.1111/j.1472-4642.2009.00594.x

    Article  Google Scholar 

  • Long JL (1981) Introduced birds of the world: the worlwide history, distribution and influence of birds introduced to new environments. David and Charles, London

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland

    Google Scholar 

  • Luque GM, Bellard C, Bertelsmeier C et al (2014) The 100th of the world’s worst invasive alien species. Biol Invasions 16:981–985. https://doi.org/10.1007/s10530-013-0561-5

    Article  Google Scholar 

  • Machovsky-Capuska GE, Senior AM, Zantis SP et al (2016) Dietary protein selection in a free-ranging urban population of common myna birds. Behav Ecol 27:219–227. https://doi.org/10.1093/beheco/arv142

    Article  Google Scholar 

  • Marambe B, Bambaradeniya C, Pushpa Kumara DK, Pallewatta N (2001) The great reshuffling: human dimensions of invasive alien species in Sri Lanka. IUCN, Gland, pp 135–142

    Google Scholar 

  • Marchetti MP, Moyle PB, Levine R (2004) Invasive species pro ling? Exploring the characteristics of non-native shes across invasion stages in California. Freshw Biol. https://doi.org/10.1111/j.1365-2427.2004.01202.x

    Article  Google Scholar 

  • Marzluff JM, Neatherlin E (2006) Corvid response to human settlements and campgrounds: causes, consequences, and challenges for conservation. Biol Conserv 130:301–314

    Article  Google Scholar 

  • Marzluff JM, McGowan KJ, Donnelly R, Knight RL (2001) Causes and consequences of expanding American Crow populations. In: Marzluff JM, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Springer, Berlin, pp 331–363

    Chapter  Google Scholar 

  • McCune JL (2016) Species distribution models predict rare species occurrences despite significant effects of landscape context. J Appl Ecol 53:1871–1879. https://doi.org/10.1111/1365-2664.12702

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  Google Scholar 

  • McNeely JA (2001) The great reshuffling: human dimensions of invasive alien species. IUCN, Gland

    Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr 19:122–133

    Article  Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208

    Article  Google Scholar 

  • Millett J, Climo G, Shah NJ (2004) Eradication of common mynah Acridotheres tristis populations in the granitic Seychelles: successes, failures and lessons learned. Adv Vertebr Pest Manag 3:169–183

    Google Scholar 

  • Møller AP, Díaz M, Flensted-Jensen E et al (2015) Urbanized birds have superior establishment success in novel environments. Oecologia 178:943–950. https://doi.org/10.1007/s00442-015-3268-8

    Article  PubMed  Google Scholar 

  • Mori E, Meini S, Strubbe D et al (2018) Do alien free-ranging birds affect human health? A global. In: Mazza G, Tricarico E (eds) Invasive species and human health. CABI International Edition, New York, pp 120–129

    Chapter  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261

    Article  Google Scholar 

  • Nenzén HK, Araújo MB (2011) Choice of threshold alters projections of species range shifts under climate change. Ecol Model 222:3346–3354

    Article  Google Scholar 

  • Norris D (2014) Model thresholds are more important than presence location type: understanding the distribution of lowland tapir (Tapirus terrestris) in a continuous Atlantic forest of southeast Brazil. Trop Conserv Sci 7:529–547

    Article  Google Scholar 

  • Oduor AMO, Leimu R, Kleunen M (2016) Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J Ecol 104:957–968

    Article  Google Scholar 

  • Orchan Y, Chiron F, Shwartz A, Kark S (2013) The complex interaction network among multiple invasive bird species in a cavity-nesting community. Biol Invasions 15:429–445. https://doi.org/10.1007/s10530-012-0298-6

    Article  Google Scholar 

  • Parkes J, Avarua R (2006) Feasibility plan to eradicate common mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Unpublished Landcare Research Contract Report, Lincoln, New Zealand

  • Peacock DS, Van Rensburg BJ, Robertson MP (2007) The distribution and spread of the invasive alien common myna, Acridotheres tristis L. (Aves: Sturnidae), in southern Africa. S Afr J Sci 103:465–473

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Peneaux C, Griffin AS (2016) Opportunistic observations of travel distances in common mynas (Acridotheres tristis). Canberra Bird Notes 40:228–234

    Google Scholar 

  • Peterson MS, Slack WT, Woodley CM, Springs O (2005) The occurrence of non-indigenous Nile tilapia, Oreochromins niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent. Wetlands 25:112–121. https://doi.org/10.1672/0277-5212(2005)025[0112:TOONNT]2.0.CO;2

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M et al (2017) Opening the black box: an open-source release of Maxent. Ecography (Cop) 40:887–893

    Article  Google Scholar 

  • Ramadan-jaradi G (2011) Climate variation impact on birds of Lebanon—assessment and identification of main measures to help the birds the adapt to change. Leban Sci J 12:25–32

    Google Scholar 

  • Rödder D, Solé M, Böhme W (2008) Predicting the potential distributions of two alien invasive Housegeckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia). North West J Zool 4:236–246

    Google Scholar 

  • Saavedra S et al (2010) Eradication of invasive mynas from islands. Is it possible. Aliens Invasive Species Bull 29:40–47

    Google Scholar 

  • Saavedra S, Maraver A, Anadón JD, Tella JL (2015a) A survey of recent introduction events, spread and mitigation efforts of mynas (Acridotheres sp.) in Spain and Portugal. Anim Biodivers Conserv 38:121–128

    Google Scholar 

  • Saavedra S, Maraver A, Anadón JD, Tella JL (2015b) A survey of recent introduction events, spread and mitigation efforts of mynas (Acridotheres sp.) in Spain and Portugal. Anim Biodivers Conserv 38:121–128

    Google Scholar 

  • Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268. https://doi.org/10.1007/s10530-011-9956-3

    Article  Google Scholar 

  • Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for managing biodiverstity under future climates. Ecol Soc 15:8

    Article  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  Google Scholar 

  • Sol D, Bartomeus I, Griffin AS (2012) The paradox of invasion in birds: competitive superiority or ecological opportunism? Oecologia 169:553–564. https://doi.org/10.1007/s00442-011-2203-x

    Article  PubMed  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, Vanderwal J et al (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545. https://doi.org/10.1111/j.1472-4642.2008.00472.x

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  • Strubbe D, Matthysen E (2009) Establishment success of invasive ring-necked and monk parakeets in Europe. J Biogeogr 36:2264–2278. https://doi.org/10.1111/j.1365-2699.2009.02177.x

    Article  Google Scholar 

  • Strubbe D, Jackson H, Groombridge J, Matthysen E (2015) Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range. Divers Distrib 21:675–685. https://doi.org/10.1111/ddi.12325

    Article  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE. https://doi.org/10.1371/journal.pone.0055158

    Article  PubMed  PubMed Central  Google Scholar 

  • Taucare-Ríos A, Bizama G, Bustamante RO (2016) Using global and regional species distribution models (SDM) to infer the invasive stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas. Environ Entomol 45:1379–1385

    Article  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stage of invasion. New Phytol 176:256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x/pdf

    Article  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Py Ek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250. https://doi.org/10.1111/j.1365-2486.2005.01018.x

    Article  Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol Model 220:589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010

    Article  Google Scholar 

  • Waltari E, Guralnick RP (2009) Ecological niche modelling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. J Biogeogr 36:148–161

    Article  Google Scholar 

  • Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735. https://doi.org/10.1007/s10530-006-9072-y

    Article  Google Scholar 

  • Ward DF, Harris RJ, Stanley MC (2005) Human-mediated range expansion of argentine ants Linepithema humile (Hymenoptera: Formicidae) in New Zealand. Sociobiology 45:401–407

    Google Scholar 

  • White JG, Antos MJ, Fitzsimons JA, Palmer GC (2005) Non-uniform bird assemblages in urban environments: the influence of streetscape vegetation. Landsc Urb Plan 71:123–135. https://doi.org/10.1016/j.landurbplan.2004.02.006

    Article  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ et al (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144. https://doi.org/10.1016/j.tree.2008.10.007

    Article  PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J et al (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

    Article  Google Scholar 

  • Young M, Carr MH (2015) Application of species distribution models to explain and predict the distribution, abundance and assemblage structure of nearshore temperate reef fishes. Divers Distrib 21:1428–1440. https://doi.org/10.1111/ddi.12378

    Article  Google Scholar 

  • Zeng Y, Low BW, Yeo DCJ (2016) Novel methods to select environmental variables in MaxEnt: a case study using invasive crayfish. Ecol Model 341:5–13. https://doi.org/10.1016/j.ecolmodel.2016.09.019

    Article  Google Scholar 

  • Zerebecki RA, Sorte CJB (2011) Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS ONE 6:e14806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the associate editor, Adam B. Smith, Emiliano Mori and an anonymous reviewer for their suggestions and comments. We are grateful to Emiliano Mori also for providing additional data for our analyses. We thank Takuya Iwamura, Jonathan Belmaker and Shai Meiri for their helpful comments, and to Adi Barocas for his technical assistance. We thank Naomi Paz for English editing. We also thank Steven Phillips for his vital help. Further thanks are due to Angelo Soto-Centeno for his thoughtful guidance. We are grateful to the Society for Protection of Nature in Israel, Israel Nature and Parks Authority, Shlomit Lifshitz and The Israeli Center for Yardbirds, J. L. Tella and C. Holzapfel for their valuable assistance in records collection.

Funding

This work was supported by the Tel Aviv University Global Research & Training Fellowship in Medical and Life Sciences (GRTF) fund, The Smaller-Winnikow Fellowship Fund for Environmental Research, and The Rieger Foundation-Jewish National Fund fellowship. SK is supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roi Dor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magory Cohen, T., McKinney, M., Kark, S. et al. Global invasion in progress: modeling the past, current and potential global distribution of the common myna. Biol Invasions 21, 1295–1309 (2019). https://doi.org/10.1007/s10530-018-1900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1900-3

Keywords

Navigation