Advertisement

Biological Invasions

, Volume 20, Issue 9, pp 2635–2646 | Cite as

Niche expansion of the common waxbill (Estrilda astrild) in its non-native range in Brazil

  • José Maria Cardoso da Silva
  • Manuella Andrade de Souza
  • Vivian Ribeiro
  • Ricardo B. Machado
Original Paper

Abstract

The geographical range of a species can change over time due to intrinsic or extrinsic factors, but the ecological niche of a species is hypothesized to be conservative and retained in time and space even during biological invasions. It has been documented that some species can experience niche shifts if natural barriers and other constraints are removed, allowing species to occur in areas with characteristics that are different from its native environment. This paper compares the realized ecological niches of the common waxbill (Estrilda astrild) in Africa (the native range) and Brazil (the non-native range) using reciprocal environmental niche modelling to determine if the species conserves its niche during the colonization of a new region. We found that the common waxbill has expanded its ecological niche in Brazil. This process has been facilitated by human interventions in the country’s natural ecosystems. Brazilian localities where the common waxbill is currently reported have higher temperatures, receive more rainfall, and exhibit denser vegetation coverage than the localities in the species’ native range. We suggest that a combination of intrinsic factors (behavior flexibility to explore and adapt to novel environments) and extrinsic factors (multiple introductions, road development and deforestation, Africanization of the tropical grasslands, and lack of competitors) acted together to facilitate the successful establishment of the common waxbill in the major Brazilian ecological regions and enable the expansion of the species’ ecological niche.

Keywords

Invasive species Common waxbill Brazil Niche expansion Niche shift 

Notes

Acknowledgements

The authors thank Cory Merow and two anonymous referees for insightful and constructive comments in this manuscript. We are grateful to Luis Barbosa for helping us with the maps. Silva received support from the University of Miami and Swift Action Fund. Machado received a research productivity Grant (#306392/2013-5) from the Brazilian National Council for Scientific and Technological Development (CNPq). Ribeiro received a fellowship from the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil.

Supplementary material

10530_2018_1723_MOESM1_ESM.pdf (717 kb)
Supplementary material 1 (PDF 717 kb)

References

  1. Barve N (2008) Tool for partial-ROC version 1. Biodiversity Institute, LawrenceGoogle Scholar
  2. Batalha HR, Ramos JA, Cardoso GC (2013) A successful avian invasion occupies a marginal ecological niche. Acta Oecol 49:92–98CrossRefGoogle Scholar
  3. Blackburn TM, Cassey P, Lockwood JL (2009) The role of species traits in the establishment success of exotic birds. Glob Change Biol 15:2852–2860CrossRefGoogle Scholar
  4. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilsion JR, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  5. Brasil (2014) Plano Mais Pecuária. Brasília, Ministério da Agricultura, Pecuária e Abastecimento. Assessoria de Gestão EstratégicaGoogle Scholar
  6. Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497CrossRefGoogle Scholar
  7. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623CrossRefGoogle Scholar
  8. Cardoso GC, Batalha HR, Reis S, Lopes RJ (2014) Increasing sexual ornamentation during a biological invasion. Behav Ecol 25:916–923CrossRefGoogle Scholar
  9. Carvalho CF, Leitão AV, Funghi C, Batalha HR, Reis S, Mota PG, Lopes RJ, Cardoso GC (2013) Personality traits are related to ecology across a biological invasion. Behav Ecol 24:1081–1091CrossRefGoogle Scholar
  10. Central Intelligence Agency (2016) Brazil. In: The world factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/br.html. Accessed 14 Feb 2018
  11. Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Syst 34:71–98CrossRefGoogle Scholar
  12. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2010) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRefGoogle Scholar
  13. Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philos Trans A Math Phys Eng Sci 369:1010–1035CrossRefPubMedGoogle Scholar
  14. Evans M, Smith S, Flynn R, Donoghue M (2009) Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia). Am Nat 173:225–240CrossRefPubMedGoogle Scholar
  15. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231CrossRefGoogle Scholar
  16. Fourcade Y, Engler JO, Rodder D, Secondi J (2014) Mapping species distribution with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gaston K (2011) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  18. Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29:260–269CrossRefPubMedGoogle Scholar
  19. Heibl C, Calenge C, Heibl MC (2013) Package “phyloclim”. https://www.cranr-projectorg/web/packages/phyloclim/indexhtml. Accessed 3 Mar 2016
  20. Hijmans, RJ, Cameron SEC, Parra JL, Jones PG, Jarvis A (2004) The WorldClim interpolated global terrestrial climate surfaces Version 13. http://www.worldclimorg. Accessed 3 Mar 2016
  21. Hijmans RJ, van Etten J, Cenh J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, Shortridge A, Ghosh A (2017) Raster v23: geographic data analysis and modelling. http://www.googl/HAqKsF. Accessed 30 Dec 2017
  22. Hutchison GE (1957) Population studies—animal ecology and demography—concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  23. IBGE (2004) Mapa de Biomas do Brasil, Escala 1:5,000,000. Instituto Brasileiro de Geografia e Estatística—IBGE, Rio de Janeiro. http://www.mapasibgegovbr. Accessed 9 June 2016
  24. Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, Van Der Ree R, Arrea IB (2014) A global strategy for road building. Nature 513:229–232CrossRefPubMedGoogle Scholar
  25. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789CrossRefGoogle Scholar
  26. Meyerson LA, Mooney H (2007) Invasive species in an era of globalization. Front Ecol Environ 5:199–208CrossRefGoogle Scholar
  27. Morinière J, Van Dam MH, Hawlitschek O, Bergsten J, Michat MC, Hendrich L, Ribera I, Toussaint EFA, Balke M (2016) Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci Rep 6:1–12CrossRefGoogle Scholar
  28. Nyári ÁS, Reddy S (2013) Comparative phyloclimatic analysis and evolution of ecological niches in the scimitar babblers (Aves: Timaliidae: Pomatorhinus). PLoS ONE 8:e55629CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oren DC, Smith NJH (1981) Notes on the status of the common African waxbill in Amazonia. Wilson Bull 93:281–282Google Scholar
  30. Parsons JT (1972) Spread of African grasses to the American tropics. J Range Manag 25:12–17CrossRefGoogle Scholar
  31. Payne R, Bonan A, Kirwan GM (2016) Common waxbill (Estrilda astrild). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the birds of the world alive. Lynx Edicions, Barcelona. http://www.hbw.com/node/61115. Accessed 7 June 2016
  32. Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modelling: a comparison of GARP and Maxent. Ecography 30:550–560CrossRefGoogle Scholar
  33. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72CrossRefGoogle Scholar
  34. Peterson AT, Soberón J, Pearson RG, Anderson RP, Marínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonGoogle Scholar
  35. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 16:1344–1348CrossRefGoogle Scholar
  36. Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al (2007). Ecography 31:272–278CrossRefGoogle Scholar
  37. Phillips SJ, Dudík M (2008) Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  38. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  39. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Sick H (1985) Ornitologia Brasileira. Editora Nova Fronteira, Rio de JaneiroGoogle Scholar
  41. Silva JMC, Oren DC (1990) Introduced and invading birds in Belém, Brazil. Wilson Bull 102:309–313Google Scholar
  42. Soberón J (2007) Grinneallian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123CrossRefPubMedGoogle Scholar
  43. Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods and assumptions. Proc Natl Acad Sci USA 106:19644–19650CrossRefPubMedGoogle Scholar
  44. Stiels D, Schidelko K, Engler JO, van den Elzen R, Roedder D (2011) Predicting the potential distribution of the invasive common waxbill Estrilda astrild (Passeriformes: Estrildidae). J Ornithol 152:769–780CrossRefGoogle Scholar
  45. Stiels D, Gaißer B, Schidelko K, Engler JO, Rödder D (2015) Niche shift in four non-native estrild finches and implications for species distribution models. Ibis 157:75–90CrossRefGoogle Scholar
  46. Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, Silva VP, Valentin JF, Vianna M, Assad ED (2014) When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob Environ Change 28:84–97CrossRefGoogle Scholar
  47. Strubbe D, Broennimann O, Chiron F, Matthysen E (2013) Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. Glob Ecol Biogeogr 22:962–970CrossRefGoogle Scholar
  48. Strubbe D, Beauchard O, Matthysen E (2015) Niche conservatism among non-native vertebrates in Europe and North America. Ecography 38:321–329CrossRefGoogle Scholar
  49. Sullivan MJP, Davies RG, Mossman HL, Franco AMA (2015) An anthropogenic habitat facilitates the establishment of non-native birds by providing underexploited resources. PLoS ONE 10:e0135833CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wascheck RC, Moreira PC, Costa DS, Dutra AR, Ferreira Neto JF, Moreira L, Campos RM, Laforga CS, Rezende PLP, Rabelo NA (2008) Características da silage de capim colonião (Panicum maximum, Jacq) submetido a quatro tempos de emurchecimento pré-ensilagem. Estudos 35:385–399Google Scholar
  51. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324CrossRefPubMedGoogle Scholar
  52. Williams DG, Baruch Z (2000) African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol Invasions 2:123–140CrossRefGoogle Scholar
  53. Young KR (2016) Biogeography of the anthropocene: domestication. Prog Phys Geogr 40:161–174CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeographyUniversity of MiamiCoral GablesUSA
  2. 2.Instituto Chico Mendes de Conservação da BiodiversidadeFloresta Nacional da Restinga de Cabedelo, RenascerCabedeloBrazil
  3. 3.Departamento de Ecologia, ICC Ala Sul, Campus Universitário Darcy RibeiroUniversidade de BrasíliaBrasiliaBrazil

Personalised recommendations