Biological Invasions

, Volume 20, Issue 3, pp 555–566 | Cite as

Introgression from non-native species unveils a hidden threat to the migratory Neotropical fish Prochilodus hartii

  • Naiara Guimarães Sales
  • Tiago Casarim Pessali
  • Francisco Ricardo Andrade Neto
  • Daniel Cardoso Carvalho
Original Paper


Invasive species are one of the greatest threats to biodiversity, due to competition, predation, pathogen spread, and hybridization. The latter may remain undetected and impair the survival of species, due to genetic admixture and hybrid swarming (i.e., interbreeding between hybrid individuals and backcrossing with parental species). The impact of invasive species remains poorly studied in the Neotropical ichthyofauna, particularly when considering the potential for hybridization between native and introduced species. Due to fisheries importance and its commercial value, species of the Prochilodus genus have been introduced to other catchments in Brazil. Here, we evaluate the introduction of non-native Prochilodus species and the potential effect of hybridization with the native migratory fish P. hartii. To evaluate possible introgression of Prochilodus spp. to P. hartii in the Jequitinhonha river basin (JRB), we employed a morphogenetic approach, analysing 219 specimens sampled from a broad extent of the river basin. Morphological analyses using meristic characters were incongruent with molecular identification by DNA barcoding (COI) in 22.83% of the analysed specimens. Haplotypes from three non-native species (P. argenteus, P. costatus, and P. lineatus) were recovered from specimens morphologically identified as P. hartii. Hybridization between P. hartii and introduced species was confirmed using co-dominant nuclear microsatellite markers. We observed a pronounced introgression pattern in this Neotropical basin, and paradoxically, despite being one of the most abundant migratory species native to the JRB, due to ongoing levels of introgression, P. hartii’s genetic integrity and conservation might be affected.


Fish introduction Hidden threat Hybrids Introduced species 



We thank CNPq (482852/2011-9 and 133324/2013-3), Projeto Peixe Vivo—CEMIG, INCT (13324/3013-3) and CAPES-PRO Equipamentos (783380/2013) for financial support and Gilberto Nepomuceno Salvador for his assistance with the maps. DCC is grateful to CNPq productivity fellowship (CNPq 308537/2014-9).

Supplementary material

10530_2017_1556_MOESM1_ESM.docx (780 kb)
Supplementary material 1 (DOCX 780 kb)


  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: Setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  3. Andrade-Neto FR (2010) Estado atual do conhecimento sobre a fauna de peixes da bacia do Jequitinhonha. MG Biota 2:23–35Google Scholar
  4. Azevedo-Santos VM, Pelicice FM, Lima-Junior DP, Magalhães ALB, Orsi ML, Vitule JRS, Agostinho AA (2015) How to avoid fish introductions in Brazil: education and information as alternatives. Nat Conserv 34:1–10Google Scholar
  5. Barbosa ACDR, Galzerani F, Corrêa TC, Galetti PM, Hatanaka T (2008) Description of novel microsatellite loci in the Neotropical fish Prochilodus argenteus and cross-amplification in P. costatus and P. lineatus. Genet Mol Biol 31:357–360CrossRefGoogle Scholar
  6. Barros LC, Santos U, Zanuncio JC, Dergam JA (2012) Plagioscion squamosissimus (Sciaenidae) and Parachromis managuensis (Cichlidae): a threat to native fishes of the Doce River in Minas Gerais, Brazil. PLoS ONE 7:e39138. doi: 10.1371/journal.pone.0039138 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carvalho DC, Oliveira DAA, Sampaio I, Beheregaray L (2009) Microsatellite markers for the Amazon peacock bass (Cichla piquiti). Mol Ecol Resour 9:239–241CrossRefPubMedGoogle Scholar
  8. Carvalho DC, Seerig AS, Brasil BSAF, Crepaldi DV, Oliveira DAA (2013) Molecular identification of the hybrid between the catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum using a set of eight microsatellite markers. J Fish Biol 83:671–676CrossRefGoogle Scholar
  9. Carvalho DC, Oliveira DAA, Sampaio A, Beheregaray LB (2014) Analysis of propagule pressure and genetic diversity in the invasibility of a freshwater apex predator: the peacock bass (genus Cichla). Neotrop Ichthyol 12:105–116CrossRefGoogle Scholar
  10. Castro RMC, Vari RP (2004) Detritivores of the South American fish Family Prochilodontidae (Teleostei: Ostariophysi: Chraciformes): a phylogenetic and revisionary study. Smithson Contrib to Zool 622:1–189Google Scholar
  11. CEMIG (2011) 11,7 toneladas de peixes soltos em 2010.
  12. Clavero M, Garcia-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:105–149CrossRefGoogle Scholar
  13. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CrossRefPubMedGoogle Scholar
  14. Godinho HP, Godinho AL, Vono V (1999) Peixes da bacia do rio Jequitinhonha. In: Mcconnel Lowe (ed) Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo, pp 414–423Google Scholar
  15. Hashimoto DT, Fernandes FM, Senhorini JA, Bortolozzi J, Oliveira C, Foresti F, Foresti FP (2010) Identification of hybrids between Neotropical fish Leporinus macrocephalus and Leporinus elongatus by PCR-RFLP and multiplex-PCR: tools for genetic monitoring in aquaculture. Aquaculture 298:326–349CrossRefGoogle Scholar
  16. Hashimoto DT, Senhorini JA, Foresti F, Foresti FP (2014) Genetic identification of F1 and post-F1 Serrasalmid juvenile hybrids in Brazilian aquaculture. PLoS ONE 9:89902. doi: 10.1371/journal.pone.0089902 CrossRefGoogle Scholar
  17. Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv 89:143–152CrossRefGoogle Scholar
  18. Kalous L, Bui AT, Petrtyl M, Bohlen J, Chaloupková P (2011) The South American freshwater fish Prochilodus lineatus (Actinopterygii: Characiformes: Prochilodontidae) new species in Vietnamese aquaculture. Aqua Res 1–4Google Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  20. Latini AO, Petrere M (2004) Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fish Manag Ecol 11:71–79CrossRefGoogle Scholar
  21. Levin DA (2002) Hybridization and extinction: in protecting rare species, conservationists should consider the dangers of interbreeding, which compound the more well-known threats to wildlife. Am Sci 90:254–259CrossRefGoogle Scholar
  22. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  23. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30CrossRefPubMedGoogle Scholar
  24. Magalhães ALB (2008) O gupi Poecilia reticulata Peters (Osteichthyes, Poeciliidae) introduzido na Serra do Espinhaço, Minas Gerais. Bol Soc Bras Ictiol 92:5–7Google Scholar
  25. Magalhães ALB, Jacobi CM (2013) Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotrop Ichthyol 11:433–441CrossRefGoogle Scholar
  26. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237CrossRefPubMedGoogle Scholar
  27. Melo BF, Sidlauskas BL, Hoekzema K, Frable BW, Vari RP, Oliveira C (2016) Molecular phylogenetics of the Neotropical fish family Prochilodontidae (Teleostei: Characiformes). Mol Phylogenet Evol 102:189–201CrossRefPubMedGoogle Scholar
  28. Metcalf JL, Pritchard VL, Silvestri SM, Jenkins JB, Wood JS, Cowley DE (2007) Across the great divide: genetic forensics reveals misidentification of endangered cutthroat trout populations. Mol Ecol 16:4445–4454CrossRefPubMedGoogle Scholar
  29. Montanari SR, Van Herwerden L, Pratched MS, Hobbs JPA, Fugedi A (2012) reef fish hybridization: lessons learnt from butterflyfishes (genus Chaetodon). Ecol Evol 2:310–328CrossRefPubMedPubMedCentralGoogle Scholar
  30. Montanari SR, Hobbs JPA, Pratched MS, Bay LK, Van Herwerden L (2014) Does genetic distance between parental species influence outcomes of hybridization among coral reef butterflyfishes? Mol Ecol 23:2757–2770CrossRefPubMedGoogle Scholar
  31. Moore BA (2005) Alien invasive species: impacts on forests and forestry. Forest resources development service working paper FBS/8E. Forest Resources Division FAO, Rome, Italy. Accessed 26 Feb 2015
  32. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pelicice FM, Vitule JRS, Lima Júnior DP, Orsi ML, Agostinho AA (2014) A serious new threat to Brazilian freshwater ecosystems: the naturalization of non-native fish by decree. Conserv Lett 7:55–60CrossRefGoogle Scholar
  34. Pereira CS, Aboim MA, Ráb P, Collares-Pereira MJ (2014) Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae). Heredity 112(3):343–350CrossRefPubMedGoogle Scholar
  35. Perini V (2013) Biologia reprodutiva e estrutura populacional de Prochilodus lineatus em um remanescente lótico da bacia do rio Grande. Thesis, Universidade Federal de Minas GeraisGoogle Scholar
  36. Perry WL, Lodge DM, Feder JL (2002) Importance of hybridization between indigenous and nonindigenous freshwater species: an overlooked threat to North American biodiversity. Syst Biol 51:255–275CrossRefPubMedGoogle Scholar
  37. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudoin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CrossRefPubMedGoogle Scholar
  38. Pompeu PS, Alves CBM (2003) Local fish extinction in a small tropical lake in Brazil. Neotrop Ichthyol 1:133–135CrossRefGoogle Scholar
  39. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
  40. Rahel FJ (2000) Homogenization of fish faunas across the United States. Science 288:854–856CrossRefPubMedGoogle Scholar
  41. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9221CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Evol Syst 27:83–109CrossRefGoogle Scholar
  43. Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. Hybrid zones and the evolutionary process. Oxford University Press, New YorkGoogle Scholar
  44. Rosa RS, Lima FCT (2008) Peixes. In: Machado ABM, Drummond GM, Paglia AP (eds) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, 1st edn. Ministério do Meio Ambiente, Brasília, pp 9–275Google Scholar
  45. Roy D, Lucek K, Walter RP, Seehausen O (2015) Hybrid ‘superswarm’ leads to a rapid divergence and establishment of populations guring a biological invasion. Mol Ecol 24:5394–5411CrossRefPubMedGoogle Scholar
  46. Saadi A (1995) A geomorfologia da Serra do Espinhaço em Minas Gerais e de suas margens. Geonomos 3:41–63Google Scholar
  47. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  48. Schmitz DC, Simberloff D (1997) Biological invasions: a growing threat. Issues Sci Technol 33–40Google Scholar
  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  51. Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA, Caseys C, Bock DG, Rieseberg LH (2016) Hybridization and extinction. Evol Appl. doi: 10.1111/eva.12367 PubMedPubMedCentralGoogle Scholar
  52. United States Environmental Protection Agency (EPA) (2012) Pathways for invasive species introduction. Accessed 13 Jan 2015
  53. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  54. Vitousek PM, D’Antonio MD, Loope LL (1997) Introduced species: a significant component of human caused global change. New Zeal J Ecol 21:11–16Google Scholar
  55. Vono V, Birindelli JLO (2007) Natural history of Wertheimeria maculata, a basal doradid catfish endemic to eastern Brazil (Suluriformes, Doradidae). Ichthyol Explor Freshw 18(2):183–191Google Scholar
  56. Vuillaume B, Valette V, Lepais O, Grandjean F, Breuil M (2015) Genetic evidence of hybridization between the endangered native species Iguana delicatissima and the invasive Iguana iguana (Reptilia, Iguanidae) in the Lesser Antilles: management implications. PLoS ONE 10(6)Google Scholar
  57. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yazbeck G, Kalapothakis E (2007) Isolation and characterization of microsatellite DNA in the piracema fish Prochilodus lineatus (Characiformes). Genet Mol Res 6:1026–1034PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Naiara Guimarães Sales
    • 1
    • 4
  • Tiago Casarim Pessali
    • 2
  • Francisco Ricardo Andrade Neto
    • 3
  • Daniel Cardoso Carvalho
    • 1
  1. 1.Programa de Pós-graduação em Biologia de Vertebrados, Laboratório de Genética da ConservaçãoPontifícia Universidade Católica de Minas GeraisBelo HorizonteBrazil
  2. 2.Museu de Ciências Naturais, Laboratório de IctiologiaPontifícia Universidade Católica de Minas GeraisBelo HorizonteBrazil
  3. 3.Programa Peixe VivoCompanhia Energética do Estado de Minas Gerais (CEMIG)Belo HorizonteBrazil
  4. 4.Ecosystems and Environment Research Centre, School of Environment and Life SciencesUniversity of SalfordSalfordUK

Personalised recommendations