Skip to main content
Log in

The susceptibility of European tree species to invasive Asian pathogens: a literature based analysis

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Alien invasive pathogens have caused numerous disastrous epidemics around the globe during the last two centuries. The frequency of these catastrophes has increased in parallel with the increase of international plant trade. Effective control of the risks requires understanding of factors governing vulnerability of indigenous plants. We tested whether the threat caused by alien pathogens of Asian origin is random among various tree species in Europe or whether it relates to their distribution range. A database including distribution ranges of 75 European tree species and literature-derived information on their susceptibility to invasive forest pathogens (IFPs) of Asian origin was compiled. Analysis on this database indicated that the susceptibility to Asian pathogens is significantly more common among tree species that occur only within Europe than among species with distributional ranges from Europe to Siberia (disease susceptibility percentage, DSP, 52 and 19 %, respectively). Notably, all severely attacked tree species are strictly European while tree species with distribution ranges extending from Europe to Siberia show at most only mild or moderate symptoms of Asian IFPs. Furthermore, the proportion of European broadleaf tree species susceptible to Asian IFPs is significantly higher than that of conifer species. Our results suggest that in Europe, Asian pathogens cause a higher risk to temperate and Mediterranean forests, largely composed of broadleaved species with distributional ranges restricted to Europe, than to boreal forests dominated by conifers distributed to Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37

    Article  Google Scholar 

  • Åström B, Ramstedt M (1994) Stem cankers on Swedish biomass willows caused by Cryptodiaporthe salicella and other fungi. Eur J Forest Pathol 24:264–276

    Article  Google Scholar 

  • Balci Y, Halmschlager E (2003) Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathol 52:694–702

    Article  Google Scholar 

  • Belisario A, Maccaroni M, Vettorazzo M (2006) First report of Phytophthora cambivora causing bleeding cankers and dieback on beech (Fagus sylvatica) in Italy. Plant Dis 90:1362

    Article  Google Scholar 

  • Brasier CM, Robredo F, Ferraz JFP (1993) Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol 42:140–145

    Article  Google Scholar 

  • Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann Sci Forest 53:347–358

    Article  Google Scholar 

  • Brasier CM, Kirk SA (2001) Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies. Mycol Res 105:547–554

    Article  Google Scholar 

  • Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808

    Article  Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (Powdery Mildew). Cramer, Berlin

    Google Scholar 

  • Braun U, Takamatsu S, Heluta V, Limkaisang S, Divarangkoon R, Cook R, Boyle H (2006) Phylogeny and taxonomy of powdery mildew fungi of Erysiphe sect. Uncinula on Carpinus species. Mycol Prog 5:139–153

    Article  Google Scholar 

  • Brown AV, Brasier M (2007) Colonization of tree xylem by Phytophthora ramorum, P. kernoviae and other Phytophthora species. Plant Pathol 56:227–241

    Article  Google Scholar 

  • Camilo-Alves CSP, Clara MIE, Ribeiro NMCA (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J Forest Res 132:411–432

    Article  Google Scholar 

  • Chavarriaga D, Bodles WJA, Leifert C, Belbahri L, Woodward S (2007) Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests. FEMS Microbiol Lett 276:67–74

    Article  CAS  PubMed  Google Scholar 

  • Dahmen H, Staub Th, Schwinn FJ (1983) Technique for long-term preservation of phytopathogenic fungi in liquid nitrogen. Phytopathology 73:241–246

    Article  Google Scholar 

  • Dai YC (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53:49–80

    Article  Google Scholar 

  • Dijkstra K (2014) Wilde planten in Nederland en België. http://wilde-planten.nl/index.html

  • Durrieu G (1995) A Microsphaera on red elder (Sambucus racemosa) in western Europe. Mycol Res 99:323–324

    Article  Google Scholar 

  • EPPO (2014) PQR-EPPO database on quarantine pests. https://gd.eppo.int/taxon/PHYTCN/hosts

  • Eurostat (2015) EU trade since 1988 by CN8 (DS-016890). http://epp.eurostat.ec.europa.eu/portal/page/portal/international_trade/data/database

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Frampton J, Benson MD (2012) Seedling resistance to Phytophthora cinnamomi in the genus Abies. Ann Forest Sci 69:805–812

    Article  Google Scholar 

  • FRAXIGEN (2005) Ash species in Europe: biological characteristics and practical guidelines for sustainable use. Oxford Forestry Institute, University of Oxford, UK. http://herbaria.plants.ox.ac.uk/fraxigen/pdfs_and_docs/book/book.html

  • Gilbertson RL, Ryvarden L (1986) North American polypores, vol 1. Fungiflora, Oslo

    Google Scholar 

  • Gilbertson RL, Ryvarden L (1987) North American polypores, vol 2. Fungiflora, Oslo

    Google Scholar 

  • Greenhalgh FC, Challen DI (1979) Trunk rot of oriental plane trees caused by Phytophthora cinnamomi. Australas Plant Path 8:50

    Article  Google Scholar 

  • Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21

    Article  CAS  PubMed  Google Scholar 

  • Hantula J, Kurkela T, Hendry S, Yamaguchi T (2009) Morphological measurements and ITS sequences show that the new alder rust in Europe is conspecific with Melampsoridium hiratsukanum in eastern Asia. Mycologia 101:622–631

    Article  CAS  PubMed  Google Scholar 

  • Haque MM, Diez JJ (2012) Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. Forest Syst 21:313–322

    Article  Google Scholar 

  • Hulten E, Fries M (1986) Atlas of North European vascular plants 1. Koeltz Scientific Books, Königstein, Germany

  • Jalas J, Suominen J (1973) Atlas Florae Europaeae, distribution of vascular plants in Europe, 2. Gymnospermae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki

  • Jung T (2009) Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathol 39:73–94

    Article  Google Scholar 

  • Jung T, Blatschke H, Osswald W (2000) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718

    Article  Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathol 36:264–270

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Lack HW (2001) Lilac and horse-chestnut: discovery and rediscovery. Bocconea 13:613–616

    Google Scholar 

  • Lane C, Berry SM, Anderson H. (2013) Rapid pest risk analysis for Melampsoridium hiratsukanum. The Food & Environment Research Agency. https://secure.fera.defra.gov.uk/phiw/riskRegister/plant-health/documents/melampsoridiumHiratsukaum.pdf

  • Linaldeddu BT, Scanu B, Maddau L, Franceschini A (2014) Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathol 44:191–200

    Article  Google Scholar 

  • Maurel M, Robin C, Capron G, Desprez-Loustau M-L (2001) Effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathol 31:353–369

    Article  Google Scholar 

  • McKinney LV, Nielsen LR, Conninge DB, Thomsen IM, Hansen JK, Kjaer ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol 63:485–499

    Article  Google Scholar 

  • Millar CI, Kinloch BB (1991) Taxonomy, phylogeny and coevolution of pines and their stem rusts. In: Rusts of pine. Proceedings of the IUFRO working party conference, September 18–22, 1989, Banff, Alberta, Canada. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta, Canada. Information Report NOR-X-317:1-38

  • Morajelo E, García-Muñoz JA, Descals E (2009) Susceptibility of Iberian trees to Phytophthora ramorum and P. cinnamomi. Plant Pathol 58:271–283

    Article  Google Scholar 

  • Müller MM, Hamberg L, Kuuskeri J, LaPorta N, Pavlov I, Korhonen K (2015) Respiration rate determinations suggest Heterobasidion parviporum subpopulations have potential to adapt to global warming. Forest Pathol 45:515–524

    Article  Google Scholar 

  • Oliva J, Boberg JB, Hopkins AJM, Stenlid J (2013) Concepts of epidemiology of forest diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CAB International, Wallingford, pp 1–28

    Chapter  Google Scholar 

  • Pilotti M, Di Lernia G, Lumia V, Riccioni L (2014) Phytophthora cinnamomi causing stem canker and root rot of nursery grown Platanus × acerifolia: first report in the Northern hemisphere. Phytopathol Mediterr 53:75–82

    Google Scholar 

  • Prospero S, Rigling D (2013) Chestnut blight. In: Nicolotti G, Gonthier P (eds) Infectious forest diseases. CAB International, Wallingford, pp 318–339

    Chapter  Google Scholar 

  • R Core Team R (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ 1:197–204

    Article  Google Scholar 

  • Rottstock T, Joshi J, Kummer V, Fischer M (2014) Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95:1907–1917

    Article  PubMed  Google Scholar 

  • Röhrig E (1996) Die Ulmen in Europa. Ökologie und epidemische Erkrankung. Forstarchiv 67:179–198

    Google Scholar 

  • Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synopsis Fungorum 31:1–455

    Google Scholar 

  • Sánchez ME, Caetano P, Ferraz J, Trapero A (2002) Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathol 32:5–18

    Article  Google Scholar 

  • Sánchez ME, Andicoberry S, Trapero A (2005) Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathol 35:115–125

    Article  Google Scholar 

  • Santini A, Barzanti GP, Capretti P (2003) Susceptibility of some mesophilic hardwoods to alder Phytophthora. J Phytopathol 151:406–410

    Article  Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitnieks T et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Sarvas R (2002) Havupuut. Helsinki, Metsälehti Kustannus

    Google Scholar 

  • Schütt P, Weisgerber H, Lang UM, Roloff A, Stimm B (2006) Enzyklopädie der Holzgewächse. Handbuch und Atlas der Dendrologie. Ecomed Medizin, Verlagsgruppe Hüthig Jehle Rehm GmbH, Germany

    Google Scholar 

  • Seko Y, Heluta V, Grigaliunaite B, Takamatsu S (2011) Morphological and molecular characterization of two ITS groups of Erysiphe (Erysiphales) occurring on Syringa and Ligustrum (Oleaceae). Mycoscience 52:174–182

    Article  Google Scholar 

  • Solla AV, Bohnens J, Collin E, Diamandis S, Franke A, Gil L, Burón M, Santini A, Mittempergher L, Pinon J et al (2005) Screening European elms for resistance to Ophiostoma novo-ulmi. Forest Sci 51:134–141

    Google Scholar 

  • Szabó I (1992) Fungi causing leaf spot symptoms and shoot blight on willows. Növényvédelem 28:295–300 (in Hungarian, English abstract)

    Google Scholar 

  • Szabó I (1997) Some foliage necrosis causing Coelomycetes on broad leaved forest trees and shrubs in the surrounding of Sopron, Hungary. Acta Phytopathol Hun 32:69–78

    Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A et al (2014) Global diversity and geography of soil fungi. Science 346:1078

    Article  CAS  Google Scholar 

  • Vettraino AM, Morel O, Perlerou C, Robin C, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. Eur J Plant Pathol 111:169–180

    Article  Google Scholar 

  • Witzell J, Berglund M, Rönnberg J (2010) Does temperature regime govern the establishment of Heterobasidion annosum in Scandinavia? Int J Biometeorol 55:275–284

    Article  PubMed  Google Scholar 

  • Zentmyer GA (1988) Origin and distribution of four species of Phytophthora. Trans Br Mycol Soc 91:367–378

    Article  Google Scholar 

  • Zhao YJ, Hosoya T, Baral HO, Hosaka K, Kakishima M (2012) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon 122:25–41

    Article  Google Scholar 

Download references

Acknowledgments

Salla Hannunen is acknowledged for extracting statistics on EU trade, Anne Siika for producing the figures, Heikki Hänninen for help in searching the literature, Kiti Müller for comments on the manuscript and Johan Kotze for checking the language. The work was supported by the Academy of Finland (project 258520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, M.M., Hamberg, L. & Hantula, J. The susceptibility of European tree species to invasive Asian pathogens: a literature based analysis. Biol Invasions 18, 2841–2851 (2016). https://doi.org/10.1007/s10530-016-1174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1174-6

Keywords

Navigation