Advertisement

Biological Invasions

, Volume 18, Issue 10, pp 2841–2851 | Cite as

The susceptibility of European tree species to invasive Asian pathogens: a literature based analysis

  • Michael M. Müller
  • Leena Hamberg
  • Jarkko Hantula
Original Paper

Abstract

Alien invasive pathogens have caused numerous disastrous epidemics around the globe during the last two centuries. The frequency of these catastrophes has increased in parallel with the increase of international plant trade. Effective control of the risks requires understanding of factors governing vulnerability of indigenous plants. We tested whether the threat caused by alien pathogens of Asian origin is random among various tree species in Europe or whether it relates to their distribution range. A database including distribution ranges of 75 European tree species and literature-derived information on their susceptibility to invasive forest pathogens (IFPs) of Asian origin was compiled. Analysis on this database indicated that the susceptibility to Asian pathogens is significantly more common among tree species that occur only within Europe than among species with distributional ranges from Europe to Siberia (disease susceptibility percentage, DSP, 52 and 19 %, respectively). Notably, all severely attacked tree species are strictly European while tree species with distribution ranges extending from Europe to Siberia show at most only mild or moderate symptoms of Asian IFPs. Furthermore, the proportion of European broadleaf tree species susceptible to Asian IFPs is significantly higher than that of conifer species. Our results suggest that in Europe, Asian pathogens cause a higher risk to temperate and Mediterranean forests, largely composed of broadleaved species with distributional ranges restricted to Europe, than to boreal forests dominated by conifers distributed to Siberia.

Keywords

Invasive forest pathogens (IFPs) Forest Europe Asia Distribution range Fungi 

Notes

Acknowledgments

Salla Hannunen is acknowledged for extracting statistics on EU trade, Anne Siika for producing the figures, Heikki Hänninen for help in searching the literature, Kiti Müller for comments on the manuscript and Johan Kotze for checking the language. The work was supported by the Academy of Finland (project 258520).

Supplementary material

10530_2016_1174_MOESM1_ESM.xls (70 kb)
Supplementary material 1 (XLS 70 kb)

References

  1. Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37CrossRefGoogle Scholar
  2. Åström B, Ramstedt M (1994) Stem cankers on Swedish biomass willows caused by Cryptodiaporthe salicella and other fungi. Eur J Forest Pathol 24:264–276CrossRefGoogle Scholar
  3. Balci Y, Halmschlager E (2003) Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathol 52:694–702CrossRefGoogle Scholar
  4. Belisario A, Maccaroni M, Vettorazzo M (2006) First report of Phytophthora cambivora causing bleeding cankers and dieback on beech (Fagus sylvatica) in Italy. Plant Dis 90:1362CrossRefGoogle Scholar
  5. Brasier CM, Robredo F, Ferraz JFP (1993) Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol 42:140–145CrossRefGoogle Scholar
  6. Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann Sci Forest 53:347–358CrossRefGoogle Scholar
  7. Brasier CM, Kirk SA (2001) Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies. Mycol Res 105:547–554CrossRefGoogle Scholar
  8. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808CrossRefGoogle Scholar
  9. Braun U (1987) A monograph of the Erysiphales (Powdery Mildew). Cramer, BerlinGoogle Scholar
  10. Braun U, Takamatsu S, Heluta V, Limkaisang S, Divarangkoon R, Cook R, Boyle H (2006) Phylogeny and taxonomy of powdery mildew fungi of Erysiphe sect. Uncinula on Carpinus species. Mycol Prog 5:139–153CrossRefGoogle Scholar
  11. Brown AV, Brasier M (2007) Colonization of tree xylem by Phytophthora ramorum, P. kernoviae and other Phytophthora species. Plant Pathol 56:227–241CrossRefGoogle Scholar
  12. Camilo-Alves CSP, Clara MIE, Ribeiro NMCA (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J Forest Res 132:411–432CrossRefGoogle Scholar
  13. Chavarriaga D, Bodles WJA, Leifert C, Belbahri L, Woodward S (2007) Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests. FEMS Microbiol Lett 276:67–74CrossRefPubMedGoogle Scholar
  14. Dahmen H, Staub Th, Schwinn FJ (1983) Technique for long-term preservation of phytopathogenic fungi in liquid nitrogen. Phytopathology 73:241–246CrossRefGoogle Scholar
  15. Dai YC (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53:49–80CrossRefGoogle Scholar
  16. Dijkstra K (2014) Wilde planten in Nederland en België. http://wilde-planten.nl/index.html
  17. Durrieu G (1995) A Microsphaera on red elder (Sambucus racemosa) in western Europe. Mycol Res 99:323–324CrossRefGoogle Scholar
  18. EPPO (2014) PQR-EPPO database on quarantine pests. https://gd.eppo.int/taxon/PHYTCN/hosts
  19. Eurostat (2015) EU trade since 1988 by CN8 (DS-016890). http://epp.eurostat.ec.europa.eu/portal/page/portal/international_trade/data/database
  20. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194CrossRefPubMedGoogle Scholar
  21. Frampton J, Benson MD (2012) Seedling resistance to Phytophthora cinnamomi in the genus Abies. Ann Forest Sci 69:805–812CrossRefGoogle Scholar
  22. FRAXIGEN (2005) Ash species in Europe: biological characteristics and practical guidelines for sustainable use. Oxford Forestry Institute, University of Oxford, UK. http://herbaria.plants.ox.ac.uk/fraxigen/pdfs_and_docs/book/book.html
  23. Gilbertson RL, Ryvarden L (1986) North American polypores, vol 1. Fungiflora, OsloGoogle Scholar
  24. Gilbertson RL, Ryvarden L (1987) North American polypores, vol 2. Fungiflora, OsloGoogle Scholar
  25. Greenhalgh FC, Challen DI (1979) Trunk rot of oriental plane trees caused by Phytophthora cinnamomi. Australas Plant Path 8:50CrossRefGoogle Scholar
  26. Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21CrossRefPubMedGoogle Scholar
  27. Hantula J, Kurkela T, Hendry S, Yamaguchi T (2009) Morphological measurements and ITS sequences show that the new alder rust in Europe is conspecific with Melampsoridium hiratsukanum in eastern Asia. Mycologia 101:622–631CrossRefPubMedGoogle Scholar
  28. Haque MM, Diez JJ (2012) Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. Forest Syst 21:313–322CrossRefGoogle Scholar
  29. Hulten E, Fries M (1986) Atlas of North European vascular plants 1. Koeltz Scientific Books, Königstein, GermanyGoogle Scholar
  30. Jalas J, Suominen J (1973) Atlas Florae Europaeae, distribution of vascular plants in Europe, 2. Gymnospermae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  31. Jung T (2009) Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathol 39:73–94CrossRefGoogle Scholar
  32. Jung T, Blatschke H, Osswald W (2000) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718CrossRefGoogle Scholar
  33. Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathol 36:264–270CrossRefGoogle Scholar
  34. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lack HW (2001) Lilac and horse-chestnut: discovery and rediscovery. Bocconea 13:613–616Google Scholar
  36. Lane C, Berry SM, Anderson H. (2013) Rapid pest risk analysis for Melampsoridium hiratsukanum. The Food & Environment Research Agency. https://secure.fera.defra.gov.uk/phiw/riskRegister/plant-health/documents/melampsoridiumHiratsukaum.pdf
  37. Linaldeddu BT, Scanu B, Maddau L, Franceschini A (2014) Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathol 44:191–200CrossRefGoogle Scholar
  38. Maurel M, Robin C, Capron G, Desprez-Loustau M-L (2001) Effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathol 31:353–369CrossRefGoogle Scholar
  39. McKinney LV, Nielsen LR, Conninge DB, Thomsen IM, Hansen JK, Kjaer ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol 63:485–499CrossRefGoogle Scholar
  40. Millar CI, Kinloch BB (1991) Taxonomy, phylogeny and coevolution of pines and their stem rusts. In: Rusts of pine. Proceedings of the IUFRO working party conference, September 18–22, 1989, Banff, Alberta, Canada. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta, Canada. Information Report NOR-X-317:1-38Google Scholar
  41. Morajelo E, García-Muñoz JA, Descals E (2009) Susceptibility of Iberian trees to Phytophthora ramorum and P. cinnamomi. Plant Pathol 58:271–283CrossRefGoogle Scholar
  42. Müller MM, Hamberg L, Kuuskeri J, LaPorta N, Pavlov I, Korhonen K (2015) Respiration rate determinations suggest Heterobasidion parviporum subpopulations have potential to adapt to global warming. Forest Pathol 45:515–524CrossRefGoogle Scholar
  43. Oliva J, Boberg JB, Hopkins AJM, Stenlid J (2013) Concepts of epidemiology of forest diseases. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CAB International, Wallingford, pp 1–28CrossRefGoogle Scholar
  44. Pilotti M, Di Lernia G, Lumia V, Riccioni L (2014) Phytophthora cinnamomi causing stem canker and root rot of nursery grown Platanus × acerifolia: first report in the Northern hemisphere. Phytopathol Mediterr 53:75–82Google Scholar
  45. Prospero S, Rigling D (2013) Chestnut blight. In: Nicolotti G, Gonthier P (eds) Infectious forest diseases. CAB International, Wallingford, pp 318–339CrossRefGoogle Scholar
  46. R Core Team R (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  47. Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ 1:197–204CrossRefGoogle Scholar
  48. Rottstock T, Joshi J, Kummer V, Fischer M (2014) Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95:1907–1917CrossRefPubMedGoogle Scholar
  49. Röhrig E (1996) Die Ulmen in Europa. Ökologie und epidemische Erkrankung. Forstarchiv 67:179–198Google Scholar
  50. Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synopsis Fungorum 31:1–455Google Scholar
  51. Sánchez ME, Caetano P, Ferraz J, Trapero A (2002) Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathol 32:5–18CrossRefGoogle Scholar
  52. Sánchez ME, Andicoberry S, Trapero A (2005) Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathol 35:115–125CrossRefGoogle Scholar
  53. Santini A, Barzanti GP, Capretti P (2003) Susceptibility of some mesophilic hardwoods to alder Phytophthora. J Phytopathol 151:406–410CrossRefGoogle Scholar
  54. Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitnieks T et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250CrossRefPubMedGoogle Scholar
  55. Sarvas R (2002) Havupuut. Helsinki, Metsälehti KustannusGoogle Scholar
  56. Schütt P, Weisgerber H, Lang UM, Roloff A, Stimm B (2006) Enzyklopädie der Holzgewächse. Handbuch und Atlas der Dendrologie. Ecomed Medizin, Verlagsgruppe Hüthig Jehle Rehm GmbH, GermanyGoogle Scholar
  57. Seko Y, Heluta V, Grigaliunaite B, Takamatsu S (2011) Morphological and molecular characterization of two ITS groups of Erysiphe (Erysiphales) occurring on Syringa and Ligustrum (Oleaceae). Mycoscience 52:174–182CrossRefGoogle Scholar
  58. Solla AV, Bohnens J, Collin E, Diamandis S, Franke A, Gil L, Burón M, Santini A, Mittempergher L, Pinon J et al (2005) Screening European elms for resistance to Ophiostoma novo-ulmi. Forest Sci 51:134–141Google Scholar
  59. Szabó I (1992) Fungi causing leaf spot symptoms and shoot blight on willows. Növényvédelem 28:295–300 (in Hungarian, English abstract) Google Scholar
  60. Szabó I (1997) Some foliage necrosis causing Coelomycetes on broad leaved forest trees and shrubs in the surrounding of Sopron, Hungary. Acta Phytopathol Hun 32:69–78Google Scholar
  61. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A et al (2014) Global diversity and geography of soil fungi. Science 346:1078CrossRefGoogle Scholar
  62. Vettraino AM, Morel O, Perlerou C, Robin C, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. Eur J Plant Pathol 111:169–180CrossRefGoogle Scholar
  63. Witzell J, Berglund M, Rönnberg J (2010) Does temperature regime govern the establishment of Heterobasidion annosum in Scandinavia? Int J Biometeorol 55:275–284CrossRefPubMedGoogle Scholar
  64. Zentmyer GA (1988) Origin and distribution of four species of Phytophthora. Trans Br Mycol Soc 91:367–378CrossRefGoogle Scholar
  65. Zhao YJ, Hosoya T, Baral HO, Hosaka K, Kakishima M (2012) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon 122:25–41CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael M. Müller
    • 1
  • Leena Hamberg
    • 1
  • Jarkko Hantula
    • 1
  1. 1.Natural Resources Institute Finland (Luke)VantaaFinland

Personalised recommendations