Advertisement

Biological Invasions

, Volume 18, Issue 8, pp 2333–2347 | Cite as

No effect of round goby Neogobius melanostomus colonisation on young-of-the-year fish density or microhabitat use

  • Michal Janáč
  • Zdenka Valová
  • Kevin Roche
  • Pavel Jurajda
Original Paper

Abstract

The round goby Neogobius melanostomus has recently invaded several major freshwater systems in Europe and North America. Despite numerous studies predicting an impact on native fish assemblages, few have attempted to demonstrate it. In this case study, we monitored the effect of N. melanostomus colonisation on abundance and habitat utilisation of both young-of-the-year (YOY) native fish and YOY western tubenose goby Proterorhinus semilunaris in a typical, medium-sized European river. Colonisation by N. melanostomus had no apparent effect on either native fish abundance and species richness or P. semilunaris abundance. Moreover, after colonisation, both native fish and P. semilunaris occupied similar niches (i.e. microhabitats) to those occupied before colonisation. While niche use of YOY N. melanostomus and P. semilunaris overlapped significantly, YOY native fish utilised different habitats from the gobiids. We suggest that N. melanostomus did not compete for resources with YOY fish in our study area due to lack of niche overlap and/or surplus resources. As N. melanostomus rapidly dominated the fish assemblage at our site, we further suggest that utilisation of an empty niche, rather than competitive superiority, was the main factor facilitating its success.

Keywords

Invasive species Niche shift Neogobius melanostomus Proterorhinus semilunaris Impact 

Notes

Acknowledgments

This study was supported by the Grant Agency of the Czech Republic, Grant No. P505/11/1768. We thank Gabriela Konečná, Markéta Mrkvová, Luděk Šlapanský and Lucie Všetičková for help with fieldwork, and M. Reichard for valuable comments to an earlier version of the manuscript. We are much indebted to representatives of the Moravian Angling Union for allowing us to sample in their waters.

References

  1. Balshine S, Verma A, Chant V, Theysmeyer T (2005) Competitive interactions between round gobies and logperch. J Great Lakes Res 31:68–77CrossRefGoogle Scholar
  2. Bergstrom MA, Mensinger AF (2009) Interspecific resource competition between the invasive round goby and three native species: logperch, slimy sculpin, and spoonhead sculpin. Trans Am Fish Soc 138:1009–1017. doi: 10.1577/T08-095.1 CrossRefGoogle Scholar
  3. Borcherding J et al (2013) Feeding and niche differentiation in three invasive gobies in the Lower Rhine, Germany. Limnologica 43:49–58. doi: 10.1016/j.limno.2012.08.003 CrossRefGoogle Scholar
  4. Brandner J, Pander J, Mueller M, Cerwenka AF, Geist J (2013) Effects of sampling techniques on population assessment of invasive round goby Neogobius melanostomus. J Fish Biol 82:2063–2079. doi: 10.1111/jfb.12137 CrossRefPubMedGoogle Scholar
  5. Broennimann O et al (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497. doi: 10.1111/j.1466-8238.2011.00698.x CrossRefGoogle Scholar
  6. Brownscombe JW, Fox MG (2013) Living at the edge of the front; reduced predation risk to invasive round goby in a Great Lakes tributary. Hydrobiologia 707:199–208. doi: 10.1007/s10750-012-1427-z CrossRefGoogle Scholar
  7. Buschbaum C, Chapman AS, Saier B (2006) How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar Biol 148:743–754. doi: 10.1007/s00227-005-0128-9 CrossRefGoogle Scholar
  8. Chotkowski MA, Marsden JE (1999) Round goby and mottled sculpin predation on lake trout eggs and fry: field predictions from laboratory experiments. J Great Lakes Res 25:26–35CrossRefGoogle Scholar
  9. Copp GH (2010) Patterns of diel activity and species richness in young and small fishes of European streams: a review of 20 years of point abundance sampling by electrofishing. Fish Fish 11:439–460. doi: 10.1111/j.1467-2979.2010.00370.x CrossRefGoogle Scholar
  10. Copp GH, Peňáz M (1988) Ecology of fish spawning and nursery zones in the flood-plain, using a new sampling approach. Hydrobiologia 169:209–224. doi: 10.1007/BF00007312 CrossRefGoogle Scholar
  11. Erös T, Sevcsik A, Toth B (2005) Abundance and night-time habitat use patterns of Ponto–Caspian gobiid species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. J Appl Ichthyol 21:350–357. doi: 10.1111/j.1439-0426.2005.00689.x CrossRefGoogle Scholar
  12. Garner P (1996) Diel patterns in the feeding and habitat use of 0-group fishes in a regulated river: the River Great Ouse, England. Ecol Freshw Fish 5:175–182CrossRefGoogle Scholar
  13. Grenouillet G, Hugueny B, Carrel GA, Olivier JM, Pont D (2001) Large-scale synchrony and inter-annual variability in roach recruitment in the Rhone River: the relative role of climatic factors and density-dependent processes. Freshw Biol 46:11–26. doi: 10.1046/j.1365-2427.2001.00637.x CrossRefGoogle Scholar
  14. Hebert CE et al (2014) Ecological tracers track changes in bird diets and possible routes of exposure to Type E Botulism. J Great Lakes Res 40:64–70. doi: 10.1016/j.jglr.2013.12.015 CrossRefGoogle Scholar
  15. Hirsch PE, N’Guyen A, Adrian-Kalchhauser I, Burkhardt-Holm P (2016) What do we really know about the impacts of one of the 100 worst invaders in Europe? A reality check. Ambio 45:267–279. doi: 10.1007/s13280-015-0718-9 CrossRefPubMedGoogle Scholar
  16. Houghton CJ, Janssen J (2015) Changes in age-0 yellow perch habitat and prey selection across a round goby invasion front. J Great Lakes Res 41:210–216. doi: 10.1016/j.jglr.2015.10.004 CrossRefGoogle Scholar
  17. Janáč M, Jurajda P (2007) A comparison of point abundance and continuous sampling by electrofishing for age-0 fish in a channelized lowland river. N Am J Fish Manage 27:1119–1125. doi: 10.1577/m06-117.1 CrossRefGoogle Scholar
  18. Janáč M, Valová Z, Jurajda P (2012) Range expansion and habitat preferences of non-native 0 + tubenose goby (Proterorhinus semilunaris) in two lowland rivers in the Danube basin. Fund Appl Limnol 181:73–85. doi: 10.1127/1863-9135/2012/0321 CrossRefGoogle Scholar
  19. Janáč M, Šlapanský L, Valová Z, Jurajda P (2013) Downstream drift of round goby (Neogobius melanostomus) and tubenose goby (Proterorhinus semilunaris) in their non-native area. Ecol Freshw Fish 22:430–438. doi: 10.1111/eff.12037 CrossRefGoogle Scholar
  20. Janssen J, Jude DJ (2001) Recruitment failure of mottled sculpin Cottus bairdi in Calumet Harbor, southern Lake Michigan, induced by the newly introduced round goby Neogobius melanostomus. J Great Lakes Res 27:319–328CrossRefGoogle Scholar
  21. Johnson TB, Bunnell DB, Knight CT (2005) A potential new energy pathway in central Lake Erie: the round goby connection. J Great Lakes Res 31:238–251CrossRefGoogle Scholar
  22. Jurajda P, Slavík O, White S, Adámek Z (2010) Young-of-the-year fish assemblages as an alternative to adult fish monitoring for ecological quality evaluation of running waters. Hydrobiologia 644:89–101. doi: 10.1007/s10750-010-0111-4 CrossRefGoogle Scholar
  23. Karlson AML, Almqvist G, Skora KE, Appelberg M (2007) Indications of competition between non-indigenous round goby and native flounder in the Baltic Sea. ICES J Mar Sci 64:479–486. doi: 10.1093/icesjms/fsl049 CrossRefGoogle Scholar
  24. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056. doi: 10.1890/08-1085.1 CrossRefPubMedGoogle Scholar
  25. Kipp R, Ricciardi A (2012) Impacts of the Eurasian round goby (Neogobius melanostomus) on benthic communities in the upper St. Lawrence River. Can J Fish Aquat Sci 69:469–486. doi: 10.1139/F2011-139 CrossRefGoogle Scholar
  26. Kornis MS, Mercado-Silva N, Vander Zanden MJ (2012) Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J Fish Biol 80:235–285. doi: 10.1111/j.1095-8649.2011.03157.x CrossRefPubMedGoogle Scholar
  27. Kornis MS, Sharma S, Vander Zanden MJ (2013) Invasion success and impact of an invasive fish, round goby, in Great Lakes tributaries. Divers Distrib 19:184–198. doi: 10.1111/ddi.12001 CrossRefGoogle Scholar
  28. Kornis MS, Carlson J, Lehrer-Brey G, Vander Zanden MJ (2014) Experimental evidence that ecological effects of an invasive fish are reduced at high densities. Oecologia 175:325–334. doi: 10.1007/s00442-014-2899-5 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lauer TE, Allen PJ, McComish TS (2004) Changes in mottled sculpin and johnny darter trawl catches after the appearance of round gobies in the Indiana waters of Lake Michigan. Trans Am Fish Soc 133:185–189. doi: 10.1577/T02-123 CrossRefGoogle Scholar
  30. Lederer AM, Janssen J, Reed T, Wolf A (2008) Impacts of the Introduced round goby (Apollonia melanostoma) on dreissenids (Dreissena polymorpha and Dreissena bugensis) and on macroinvertebrate community between 2003 and 2006 in the littoral zone of Green Bay, Lake Michigan. J Great Lakes Res 34:690–697CrossRefGoogle Scholar
  31. Manné S, Poulet N, Dembski S (2013) Colonisation of the Rhine basin by non-native gobiids: an update of the situation in France. Knowl Manag Aquat Ecosyst. doi: 10.1051/kmae/2013069 Google Scholar
  32. Marchetti MP, Light T, Moyle PB, Viers JH (2004) Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecol Appl 14:1507–1525. doi: 10.1890/03-5173 CrossRefGoogle Scholar
  33. Marentette JR et al (2010) Signatures of contamination in invasive round gobies (Neogobius melanostomus): a double strike for ecosystem health? Ecotox Environ Safe 73:1755–1764. doi: 10.1016/j.ecoenv.2010.06.007 CrossRefGoogle Scholar
  34. Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161. doi: 10.1016/0006-3207(96)00024-9 CrossRefGoogle Scholar
  35. Nunn AD, Harvey JP, Cowx IG (2007) The food and feeding relationships of larval and 0 + year juvenile fishes in lowland rivers and connected waterbodies. I. Ontogenetic shifts and interspecific diet similarity. J Fish Biol 70:726–742. doi: 10.1111/j.1095-8649.2007.01334.x CrossRefGoogle Scholar
  36. Ondračková M, Hudcová I, Dávidová M, Adámek Z, Kašný M, Jurajda P (2015) Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda). Parasite Vector. doi: 10.1186/S13071-015-0999-7 Google Scholar
  37. Pettitt-Wade H, Wellband KW, Heath DD, Fisk AT (2015) Niche plasticity in invasive fishes in the Great Lakes. Biol Invasions 17:2565–2580. doi: 10.1007/s10530-015-0894-3 CrossRefGoogle Scholar
  38. Polačik M, Janáč M, Jurajda P, Vassilev M, Trichkova T (2008) The sampling efficiency of electrofishing for Neogobius species in a riprap habitat: a field experiment. J Appl Ichthyol 24:601–604. doi: 10.1111/j.1439-0426.2008.01100.x CrossRefGoogle Scholar
  39. Polačik M, Jurajda P, Blažek R, Janáč M (2015) Carcass-feeding as a cryptic foraging mode in round goby Neogobius melanostomus. J Fish Biol 87:194–199. doi: 10.1111/jfb.12708 CrossRefPubMedGoogle Scholar
  40. Poos M, Dextrase AJ, Schwalb AN, Ackerman JD (2010) Secondary invasion of the round goby into high diversity Great Lakes tributaries and species at risk hotspots: potential new concerns for endangered freshwater species. Biol Invasions 12:1269–1284. doi: 10.1007/s10530-009-9545-x CrossRefGoogle Scholar
  41. Ray WJ, Corkum LD (2001) Habitat and site affinity of the round goby. J Great Lakes Res 27:329–334CrossRefGoogle Scholar
  42. Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. Trends Ecol Evol 15:62–65. doi: 10.1016/S0169-5347(99)01745-0 CrossRefPubMedGoogle Scholar
  43. Riley SC, Adams JV (2010) Long-term trends in habitat use of offshore demersal fishes in western Lake Huron suggest large-scale ecosystem change. Trans Am Fish Soc 139:1322–1334. doi: 10.1577/T09-090.1 CrossRefGoogle Scholar
  44. Riley SC, Roseman EF, Nichols SJ, O’Brien TP, Kiley CS, Schaeffer JS (2008) Deepwater demersal fish community collapse in Lake Huron. Trans Am Fish Soc 137:1879–1890. doi: 10.1577/T07-141.1 CrossRefGoogle Scholar
  45. Roche KF, Janáč M, Jurajda P (2013) A review of gobiid expansion along the Danube–Rhine corridor—geopolitical change as a driver for invasion. Knowl Manag Aquat Ecosyst. doi: 10.1051/Kmae/2013066 Google Scholar
  46. Rogers MW, Bunnell DB, Madenjian CP, Warner DM (2014) Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008. Can J Fish Aquat Sci 71:1072–1086. doi: 10.1139/cjfas-2013-0514 CrossRefGoogle Scholar
  47. Rush SA et al (2012) Long-term impacts of invasive species on a native top predator in a large lake system. Freshw Biol 57:2342–2355. doi: 10.1111/Fwb.12014 CrossRefGoogle Scholar
  48. Šlapanský L, Jurajda P, Janáč M (2016) Early life stages of exotic gobiids as new hosts for unionid glochidia. Freshwater Biol 61:979–990. doi: 10.1111/fwb.12761 CrossRefGoogle Scholar
  49. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. doi: 10.1016/j.tree.2006.07.007 CrossRefPubMedGoogle Scholar
  50. Valová Z, Jurajda P, Janáč M (2006) Spatial distribution of 0 + juvenile fish in differently modified lowland rivers. Folia Zool 55:293–308Google Scholar
  51. Valová Z, Konečná M, Janáč M, Jurajda P (2015) Population and reproductive characteristics of a non-native western tubenose goby (Proterorhinus semilunaris) population unaffected by gobiid competitors. Aquat Invasions 10:57–68. doi: 10.3391/ai.2015.10.1.06 CrossRefGoogle Scholar
  52. Van Kessel N, Dorenbosch M, De Boer MRM, Leuven R, Van der Velde G (2011) Competition for shelter between four invasive gobiids and two native benthic fish species. Curr Zool 57:844–851CrossRefGoogle Scholar
  53. Vanderploeg HA et al (2002) Dispersal and emerging ecological impacts of Ponto–Caspian species in the Laurentian Great Lakes. Can J Fish Aquat Sci 59:1209–1228. doi: 10.1139/F02-087 CrossRefGoogle Scholar
  54. Vašek M, Všetičková L, Roche K, Jurajda P (2014) Diet of two invading gobiid species (Proterorhinus semilunaris and Neogobius melanostomus) during the breeding and hatching season: no field evidence of extensive predation on fish eggs and fry. Limnologica 46:31–36. doi: 10.1016/j.limno.2013.11.003 CrossRefGoogle Scholar
  55. Všetičková L, Janáč M, Vašek M, Roche K, Jurajda P (2014) Non-native western tubenose gobies Proterorhinus semilunaris show distinct site, sex and age-related differences in diet. Knowl Manag Aquat Ecosyst. doi: 10.1051/Kmae/2014022 Google Scholar
  56. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michal Janáč
    • 1
  • Zdenka Valová
    • 1
  • Kevin Roche
    • 1
  • Pavel Jurajda
    • 1
  1. 1.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations