Biological Invasions

, Volume 18, Issue 7, pp 2045–2065 | Cite as

The invasion of Senecio pterophorus across continents: multiple, independent introductions, admixture and hybridization

  • Roser Vilatersana
  • María Sanz
  • Almudena Galian
  • Eva Castells
Original Paper


Senecio pterophorus (Compositae) is a perennial shrub native to eastern South Africa that was introduced into the Western Cape in South Africa and Australia approximately 100 years ago and into Europe (Italy and Spain) more than 25–30 years ago. In this study, the aims were to unravel the putative sources of the introduced populations and identify the changes in genetic diversity after invasion using molecular markers and phylogeographic and population genetic analyses. We sampled the entire area of distribution for S. pterophorus extensively. Based on the results, three lineages were established along a latitudinal and climatic gradient in the native range (south, central, central/north) with high levels of admixture. Multiple, independent introductions occurred in the four invaded ranges. The central/northern lineage (humid climate) was the primary source for all of the invaded regions (with drier climates), although a secondary role was revealed for the southern lineage in the Western Cape and the central/northern lineage in Australia and Spain. The genetic diversity was slightly lower in the Spanish and Australian populations than that in the native populations. A variety of demographic and genetic processes affected the amount and structure of genetic diversity in the invaded areas, including multiple introductions and admixture (Western Cape, Australia and Spain) as well as pre-invasive hybridization (Italy). The patterns of dispersion support a hypothesis of rapid evolution of S. pterophorus after invasion in response to novel climatic conditions.


Admixture AFLP markers Genetic diversity Genetic structure Hybridization Invasion routes 



We are most grateful to José M. Blanco-Moreno (Universitat de Barcelona), Anna Escolà, and Maria Morante (Universitat Autònoma de Barcelona) for their assistance in collecting the plant samples used in this study. We also thank Bernat del Rey for assistance with Fig. 7 and Josep Maria Benaul (Universitat de Barcelona) for providing historical information on wool imports in Spain. The financial support provided to E.C. by Ministerio de Ciencia e Innovación (Spain) (GCL2008-02421/BOS) and Ministerio de Economía y Competitividad (Spain) (GCL2011-29205) to conduct this research is gratefully acknowledged. R.V. and A.G. are in the “Biodiversity and biosystematic vegetal” group (2014 SGR-514) and E.C. is in the “Response of ecosystems to climate change and environmental gradients” research group (2014 SGR-453), which are both funded by Generalitat de Catalunya (Catalonia). The permits for sampling were obtained from the corresponding authorities when required.

Supplementary material

10530_2016_1150_MOESM1_ESM.doc (10.6 mb)
Supplementary material 1 (DOC 10810 kb)


  1. Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405CrossRefPubMedGoogle Scholar
  2. Aikio S, Duncan RP, Hulme PE (2010) Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119:370–378CrossRefGoogle Scholar
  3. Andreu J, Pino J, Basnou C, Guardiola M, Ordóñez JL (2012) Les espècies exòtiques de Catalunya: Resum del projecte EXOCAT 2012. Generalitat de Catalunya, Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, BarcelonaGoogle Scholar
  4. Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186CrossRefGoogle Scholar
  5. Barberis G, Minuto L, Peccenini S (1998) Senecio grisebachii Baker (Compositae), new to the Italian flora. Webbia 52:201–206CrossRefGoogle Scholar
  6. Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). Am J Bot 100:867–882CrossRefPubMedGoogle Scholar
  7. Blair AC, Hufbauer RA (2010) Hybridization and invasion: one of North America’s most devastating invasive plants shows evidence for a history of interspecific hybridization. Evol Appl 7:40–51CrossRefGoogle Scholar
  8. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273CrossRefPubMedGoogle Scholar
  9. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11CrossRefPubMedGoogle Scholar
  10. Calvo J, Álvarez I, Aedo C, Pelser PB (2013) A phylogenetic analysis and new delimitation of Senecio sect. Crociseris (Compositae: Senecioneae), with evidence of intergeneric hybridization. Taxon 62:127–140CrossRefGoogle Scholar
  11. Caño L, Escarré J, Blanco-Moreno JM, Sans FX (2008) Assessing the effect of inbreeding and long-distance gene flow on the invasive potential of Senecio pterophorus (Asteraceae). Aust J Bot 56:539–549CrossRefGoogle Scholar
  12. Castells E, Morante M, Blanco-Moreno JM, Sans FX, Vilatersana R, Blasco-Moreno A (2013) Reduced seed predation after invasion supports enemy release in a broad biogeographical survey. Oecologia 173:1397–1409CrossRefPubMedGoogle Scholar
  13. Castells E, Morante M, Goula M, Pérez N, Dantart J, Escolà A (2014a) Herbivores on native and exotic Senecio plants: is herbivore host switching related to plant novelty and insect diet breadth under field conditions? Insect Conserv Divers 7:420–431CrossRefGoogle Scholar
  14. Castells E, Mulder PJ, Pérez-Trujillo M (2014b) Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity. Phytochemistry 108:137–146CrossRefPubMedGoogle Scholar
  15. Chamorro L, Caballero B, Blanco-Moreno JM, Caño L, Garcia-Serrano H, Masalles RM, Sans FX (2006) Ecología y distribución de Senecio pterophorus (Compositae) en la Península Ibérica. Ann Jard Bot Madrid 53:55–62Google Scholar
  16. Chun YJ, Fumanal B, Laitung B, Bretagnolle F (2010) Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol 185:1100–1107CrossRefPubMedGoogle Scholar
  17. Coart E, Van Glabeke S, Petit RJ, Van Bockstaele E, Roldán-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273CrossRefGoogle Scholar
  18. Colomer-Ventura F, Martínez-Vilalta J, Zuccarini P, Escolà A, Armengot L, Castells E (2015) Contemporany evolution of an invasive plant is associated with climate but not with herbivory. Funct Ecol 29:1475–1485CrossRefGoogle Scholar
  19. Corander J, Waldmann P, Marttinen P, Sillanpaa M (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369CrossRefPubMedGoogle Scholar
  20. Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invasions 11:1107–1119CrossRefGoogle Scholar
  21. Dainese M, Kühn I, Bragazza L (2014) Alien plant species distribution in the European Alps: influence of species’ climatic requirements. Biol Invasions 16:815–831CrossRefGoogle Scholar
  22. Delisle F, Lavoie C, Jean M, Lachance D (2003) Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. J Biogeogr 30:1033–1042CrossRefGoogle Scholar
  23. DEPI (2014) Department of Environment and Primary Industries. State Government Victoria. Accesssed 26 Nov 2014
  24. Dirección General de Aduanas de España (1951–1986) Estadística del comercio exterior de España. Ministerio de Hacienda, MadridGoogle Scholar
  25. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptative evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  26. Doorduin LJ, van den Hof K, Vrieling K, Joshi J (2010) The lack of genetic bottleneck in invasive Tansy ragwort population suggest multiple source populations. Basic Appl Ecol 11:244–250CrossRefGoogle Scholar
  27. Dormontt EE, Gardner MG, Breed MF, Rodger JG, Prentis PJ, Lowe AJ (2014) Genetic bottlenecks in time and space: reconstructing invasions from contemporary and historical collections. PLoS ONE 9:e106874. doi: 10.1371/journal.pone.0106874 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Doyle JJ, Dickson EE (1987) Preservation of plant-samples for DNA restriction endonuclease analysis. Taxon 36:715–722CrossRefGoogle Scholar
  29. Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383CrossRefGoogle Scholar
  30. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  31. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  32. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  33. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  34. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fellows I (2012) Deducer: a data analysis GUI for R. J Stat Softw 49:1–15CrossRefGoogle Scholar
  36. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  37. Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253CrossRefGoogle Scholar
  38. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  39. Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  40. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  42. Hamilton JA, Okada M, Korves T, Schmitt J (2015) The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol Ecol 24:2253–2263CrossRefPubMedGoogle Scholar
  43. Heddle EM (1974) South African daisy in the national parks of South Australia. Environ Conserv 1:152CrossRefGoogle Scholar
  44. Hilliard OM (1977) Compositae in Natal. University of Natal Press, PietermaritzburgGoogle Scholar
  45. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefPubMedGoogle Scholar
  46. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  47. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. doi: 10.1186/1471-2156-6-13 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kane NC, King MG, Barker MS, Raduski A, Karrenberg S, Yatabe Y, Knapp SJ, Rieseberg LH (2009) Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent Helianthus species. Evolution 63:2061–2075CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kirk H, Máčel M, Klinkhamer PG, Vrieling K (2004) Natural hybridization between Senecio jacobaea and Senecio aquaticus: molecular and chemical evidence. Mol Ecol 13:2267–2274CrossRefPubMedGoogle Scholar
  51. Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181CrossRefPubMedGoogle Scholar
  52. Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of lizard species. Biol Lett 4:434–437CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kowarik I, von der Lippe M (2007) Pathways in plant invasions. In: Nentwig W (ed) Biological invasions. Springer, Berlin Heidelberg, pp 29–47Google Scholar
  54. Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967CrossRefPubMedGoogle Scholar
  55. Lai Z, Kane NC, Kozik A, Hodgins KA, Dlugosch KM, Barker MS, Matvienko M, Yu Q, Turner KG, Pearl SA, Bell GDM, Zou Y, Grassa C, Guggisberg A, Adams KL, Anderson JV, Horvath DP, Kesseli RV, Burke JM, Michelmore RW, Rieseberg LH (2012) Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. Am J Bot 99:209–221CrossRefPubMedGoogle Scholar
  56. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lawrence ME (1985) Senecio L. (Asteraceae) in Australia: reproductive biology of a genus found primarily in unstable. Austral J Bot 33:197–208CrossRefGoogle Scholar
  58. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  59. Levyns MR (1950) Compositae. In: Adamson RS, Salter TM (eds) Flora of the Cape peninsula. Juta, Cape Town, pp 808–818Google Scholar
  60. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247CrossRefPubMedGoogle Scholar
  61. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99CrossRefPubMedGoogle Scholar
  62. Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561–572CrossRefGoogle Scholar
  63. Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, Macisaac HJ (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035CrossRefPubMedGoogle Scholar
  64. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  65. Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer & Associates, Sunderlands, pp 201–227Google Scholar
  66. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  67. O’Hanlon PC, Peakall R, Briese DT (1999) Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Mol Ecol 8:1239–1246CrossRefPubMedGoogle Scholar
  68. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24CrossRefPubMedGoogle Scholar
  69. Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia, 2nd edn. CSIRO Publishing, Collingwood, pp 306–308Google Scholar
  70. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  71. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348CrossRefPubMedGoogle Scholar
  72. Pino J, Afán I, Sans FX, Gutiérrez C (2000) Senecio pterophorus DC., a new alien species in the European mainland. Ann Jard Bot Madrid 58:188–189Google Scholar
  73. Preston CA, Pearman DA, Dines TD (2002) New altlas of the British and Irish flora: an atlas of the vascular plants of Britain, Ireland, the Isle of Man and the Channel Islands. Oxford University Press, OxfordGoogle Scholar
  74. Pritchard JK, Stephens M, Donnely PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  75. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  76. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Biol Conserv 17:230–237CrossRefGoogle Scholar
  77. Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025CrossRefPubMedGoogle Scholar
  78. Robinson H, Carr GD, King RM, Powell AM (1997) Chromosome numbers in Compositae, XVII: Senecioneae III. Ann Mo Bot Gard 84:893–906CrossRefGoogle Scholar
  79. Rohlf FJ (1998) NTSYSpc. Numerical taxonomy and multivariate analysis system, version 2.02j. Exeter Software, Setauket, New YorkGoogle Scholar
  80. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  81. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  82. Sanz N, Araguas RM, Vidal O, Diez-del-Molino D, Fernández-Cebrián R, García-Marín JL (2013) Genetic characterization of the invasive mosquitofish (Gambusia spp.) introduced to Europe: population structure and colonization routes. Biol Invasions 15:2333–2346CrossRefGoogle Scholar
  83. Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566CrossRefGoogle Scholar
  84. Simberloff D (2009) The role of propagule pression in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  85. Simberloff D (2013) Biological invasions: prospects for slowing a major global change. Elem Sci Anth 1:8. doi: 10.12952/journal.elementa.000008 CrossRefGoogle Scholar
  86. Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36:614–621CrossRefPubMedGoogle Scholar
  87. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651CrossRefPubMedGoogle Scholar
  88. Tel-Zur N, Abbo S, Mysladbodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17:249–254CrossRefGoogle Scholar
  89. The Council of Heads of Australasian Herbaria (2013) Australia’s Virtual Herbarium. Accessed 22 May 2014
  90. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273CrossRefPubMedGoogle Scholar
  91. Vandepitte K, Meyer T, Helsen K, Acker K, Roldán-Ruiz I, Mergeay J, Honnay O (2014) Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol 23:2157–2164CrossRefPubMedGoogle Scholar
  92. Vekemans X (2002) AFLP–SURV. Distributed by the author, Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, BelgiumGoogle Scholar
  93. Verloove F (2005) New records of interesting xenophytes in Spain. Lazaroa 26:141–148Google Scholar
  94. Verloove F (2006) Catalogue of neophytes in Belgium (1800–2005). National Botanic Garden of Belgium, MeiseGoogle Scholar
  95. Verloove F, Banfi E, Galasso G (2007) Notulae: 1358–1363. Inform Bot Ital 39:418–420Google Scholar
  96. Vilatersana R, Susanna A, Brochmann C (2007) Genetic variation in Femeniasia (Compositae, Cardueae), an endemic and endangered monotypic genus from the Balearic Island (Spain). Bot J Linn Soc 153:97–107CrossRefGoogle Scholar
  97. Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  98. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprint. Nucleic Acids Res 23:4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  99. Walsh NG (1999) Senecio. In: Walsh NG, Entwisle TJ (eds) Flora of Victoria, Dicotyledons: Cornaceae to Asteraceae, vol 4. Inkata Press, Melbourne, pp 941–965Google Scholar
  100. Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Philos Trans R Soc A 369:835–841CrossRefGoogle Scholar
  101. Zenni RD, Nuñez MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801–815CrossRefGoogle Scholar
  102. Zhivotovsky L (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Roser Vilatersana
    • 1
  • María Sanz
    • 2
  • Almudena Galian
    • 1
  • Eva Castells
    • 2
    • 3
  1. 1.Botanic Institute of Barcelona (IBB-CSIC-ICUB)BarcelonaSpain
  2. 2.Departament de Farmacologia, Terapèutica i ToxicologiaUniv Autònoma de BarcelonaCerdanyola del VallèsSpain
  3. 3.CREAFCerdanyola del VallèsSpain

Personalised recommendations