Biological Invasions

, Volume 18, Issue 7, pp 1853–1865 | Cite as

The enhancement of invasion ability of an annual grass by its fungal endophyte depends on recipient community structure

  • Cecilia Casas
  • Pedro E. Gundel
  • María Semmartin
  • Hans Schnyder
  • Marina Omacini
Original Paper


Most terrestrial plants establish symbiotic associations with microorganisms that enable them to overcome abiotic or biotic filters in ecosystems. Here we investigated how aerial mutualisms involving invasive species may affect the recipient community’s structure. We hypothesized that the endophyte Epichloë occultans enhances the ability of Lolium multiflorum to establish and colonize, but that success would depend on the structure and invasion resistance of the recipient grassland community. Seeds of L. multiflorum with high (E+) and low (E−) endophyte incidence were sown in plots located in grasslands with or without recent grazing history. Relative cover of L. multiflorum and floristic groups was determined during the growing season. Whereas we did not detect any endophyte effect in sites with grazing history, L. multiflorum cover was 63 % in E+ and 27 % in E− plots in sites without grazing history. As cover of L. multiflorum increased in these sites, the cover of warm- and cool-season grasses decreased in spring, with that of warm-season grasses continuing to decrease in summer. These decreases corresponded to 1.9, 3.7 and 1.6 %, for every % increase of L. multiflorum cover. Path analysis and posterior modelling predicted a greater impact of the endophyte on L. multiflorum cover than of seed addition when resident L. multiflorum cover was ≤20 %. This effect decreased asymptotically as L. multiflorum cover increased beyond 20 %. Our results suggest that the endophyte may boost the invasion ability of L. multiflorum particularly in natural grassland without grazing history with potential longer-term consequences for community structure and dynamics.


Lolium multiflorum Epichloë occultans Grass-endophyte symbiosis Grassland functional groups 



We thank the anonymous reviewers and the journal editor Dr. Daniel Simberloff for their insightful and detailed suggestions that have helped to improve the manuscript. We also thank Pablo García-Parisi, Luis I. Pérez, Ezequiel Bossio, Maximiliano Mallarini and Hernán Casas for experiment assembly and samples processing; Dr. Florencia A. Yannelli Lucero for help with phylogenetic analysis and Francisco González Pinto for detailed discussion about statistical models and estimation of parameters. We thank the owners of the farm "Las Chilcas" who kindly allowed us to run the experiment on his property. This research was funded by the University of Buenos Aires (UBACYT, G434- 2008-2011, Dir. Dr. M. Semmartin) and, by the National Council of Scientific and Technical Research (CONICET, PICT 2010-1525- 2011-2014 and PICT 992-2008-2010 both, Dir. Dr. M. Omacini). CC was supported by a PhD fellowship from CONICET.

Supplementary material

10530_2016_1129_MOESM1_ESM.docx (76 kb)
Supplementary material 1 (DOCX 76 kb)
10530_2016_1129_MOESM2_ESM.eps (121 kb)
Supplementary material 2 (EPS 122 kb)
10530_2016_1129_MOESM3_ESM.eps (106 kb)
Supplementary material 3 (EPS 106 kb)
10530_2016_1129_MOESM4_ESM.eps (104 kb)
Supplementary material 4 (EPS 105 kb)
10530_2016_1129_MOESM5_ESM.eps (88 kb)
Supplementary material 5 (EPS 89 kb)
10530_2016_1129_MOESM6_ESM.pptx (3.6 mb)
Supplementary material 6 (PPTX 3708 kb)
10530_2016_1129_MOESM7_ESM.pptx (3.6 mb)
Supplementary material 7 (PPTX 3708 kb)
10530_2016_1129_MOESM8_ESM.pptx (101 kb)
Supplementary material 8 (PPTX 101 kb)
10530_2016_1129_MOESM9_ESM.pptx (113 kb)
Supplementary material 9 (PPTX 113 kb)
10530_2016_1129_MOESM10_ESM.docx (27 kb)
Supplementary material 10 (DOCX 27 kb)


  1. Abrams P (1983) The theory of limiting similarity. Annu Rev Ecol Syst 14:359–376CrossRefGoogle Scholar
  2. Allen EB, Allen MF (1986) Water relations of xeric grasses in the field: interactions of mychorrhizas and competition. New Phytol 104:559–571CrossRefGoogle Scholar
  3. Allen MF, Richards JH, Busso CA (1989) Influence of clipping and water status on vesicular-arbuscular mycorrhizae of two semi-arid tussock grasses. Biol Fertil Soils 8:285–289CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B et al (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version. 1.1-7Google Scholar
  5. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188. doi: 10.1214/aos/1013699998 CrossRefGoogle Scholar
  6. Berasategui LA, Barberis LA (1992) Los suelos de las comunidades vegetales de la región Castelli-Pila, Depresión del Salado (Pcia. de Buenos Aires). Rev Fac Agron 3:13–25Google Scholar
  7. Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  8. Bunn RA, Ramsey PW, Lekberg Y (2015) Do native and invasive plants differ in their interactions with, arbuscular mycorrhizal fungi? A meta-analysis. J Ecol. doi: 10.1111/1365-2745.12456 Google Scholar
  9. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi: 10.1038/nature02322 CrossRefPubMedGoogle Scholar
  10. Callaway RM, Cipollini D, Barto K et al (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055CrossRefPubMedGoogle Scholar
  11. Canfield RH (1941) Application of the line interception method in sampling range vegetation. J For 39:388–394Google Scholar
  12. Casas C, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355. doi: 10.1007/s11104-010-0607-8 CrossRefGoogle Scholar
  13. Catalán P, Torrecilla P, Stace CA (2007) A systematic approach to subtribe Loliinae (Poaceae: Pooideae) based on phylogenetic evidence. Aliso J Syst Evol Bot 23:380–405Google Scholar
  14. Chaneton EJ, Lavado RS (1996) Soil nutrients and salinity after long-term grazing exclusion in a Flooding Pampa grassland. J Range Manag 49:182–187CrossRefGoogle Scholar
  15. Chaneton EJ, Facelli JM, Leon JC (1988) Floristic changes induced by flooding on grazed and ungrazed lowland grasslands in Argentina. J Range Manag 41:495–499CrossRefGoogle Scholar
  16. Chaneton E, Perelman S, Omacini M, León RC (2002) Grazing, environmental heterogeneity, and alien plant invasions in temperate pampa grasslands. Biol Invasions 4:7–24. doi: 10.1023/A:1020536728448 CrossRefGoogle Scholar
  17. Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University ress, New YorkCrossRefGoogle Scholar
  18. Cid MS, Fernández Grecco RC, Oesterheld M et al (2011) Grass-fed beef production systems of Argentina’s flooding pampas: understanding ecosystem heterogeneity to improve livestock production. Outlook Agric 40:181–189. doi: 10.5367/oa.2011.0040 CrossRefGoogle Scholar
  19. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16. doi: 10.2307/1943155 CrossRefGoogle Scholar
  20. Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297. doi: 10.1016/j.pbi.2012.03.007 CrossRefGoogle Scholar
  21. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science (80-) 285:1742–1744Google Scholar
  22. Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127CrossRefGoogle Scholar
  23. Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. PNAS 102:12465–12470. doi: 10.1073/pnas.0503059102 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Clough Y (2012) A generalized approach to modeling and estimating indirect effects in ecology. Ecology 93:1809–1815. doi: 10.1890/11-1899.1 CrossRefPubMedGoogle Scholar
  25. Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330. doi: 10.1086/321316 CrossRefPubMedGoogle Scholar
  26. De Battista J (2005) Neotyphodium research and aplication In South America. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses, 1st edn. Blackwell Publishing Ltd, Oxford, pp 65–71CrossRefGoogle Scholar
  27. García Parisi PA, Lattanzi FA, Grimoldi AA, Omacini M (2014) Multi-symbiotic systems: functional implications of the coexistence of grass-endophyte and legume-rhizobia symbioses. Oikos 124:553–560CrossRefGoogle Scholar
  28. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  29. Gelman A, Su YS (2015) arm: data analysis using regression and multilevel/hierarchical models. R package version 1.8-6.
  30. Gundel PE, Garibaldi LA, Tognetti PM et al (2009a) Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the flooding pampa. Microb Ecol 57:740–748. doi: 10.1007/s00248-008-9447-y CrossRefPubMedGoogle Scholar
  31. Gundel PE, Martínez-Ghersa MA, Garibaldi LA, Ghersa CM (2009b) Viability of Neotyphodium endophytic fungus and endophyte-infected and noninfected Lolium multiflorum seeds. Botany 87:88–96. doi: 10.1139/B08-119 CrossRefGoogle Scholar
  32. Gundel PE, Martínez-Ghersa MA, Omacini M et al (2012) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 5:838–849. doi: 10.1111/j.1752-4571.2012.00261.x CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  34. Iannone L, White J Jr, Giussani L et al (2011) Diversity and distribution of Neotyphodium-infected grasses in Argentina. Mycol Prog 10:9–19. doi: 10.1007/s11557-010-0669-2 CrossRefGoogle Scholar
  35. Iannone LJ, Novas V, Young CA et al (2012) Endophytes of native grasses from South America: biodiversity and ecology. Fungal Ecol 5:357–363. doi: 10.1016/j.funeco.2011.05.007 CrossRefGoogle Scholar
  36. Jacobo EJ, Rodríguez A, Bartoloni N, Deregibus VA (2006) Rotational grazing effects on rangeland vegetation at a farm scale. Rangel Ecol Manag 59:249–257CrossRefGoogle Scholar
  37. Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71:337–344. doi: 10.1016/j.envexpbot.2011.01.002 Google Scholar
  38. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70CrossRefPubMedGoogle Scholar
  39. Kulmatiski A (2006) Exotic plants establish persistent communities. Plant Ecol 187:261–275. doi: 10.1007/s11258-006-9140-5 CrossRefGoogle Scholar
  40. Lavado RS, Taboada MA (1987) Soil salinization as an effect of grazing in a native grassland soil in the Flooding Pampa of Argentina. Soil Use Manag 3:143–148. doi: 10.1111/j.1475-2743.1987.tb00724.x CrossRefGoogle Scholar
  41. Lefcheck JS (2015) piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol Evol. doi: 10.1111/2041-210X.12512 Google Scholar
  42. Leuchtmann A, Bacon CW, Schardl CL et al (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215. doi: 10.3852/13-251 CrossRefPubMedGoogle Scholar
  43. Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854CrossRefPubMedGoogle Scholar
  44. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi: 10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  45. Li SP, Cadotte MW, Meiners SJ, Hua ZS, Shu HY, Li JT, Shu WS (2015) The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol Lett 18:1285–1292. doi: 10.1111/ele.12522 CrossRefPubMedGoogle Scholar
  46. Longo G, Seidler TG, Garibaldi LA et al (2013) Functional group dominance and identity effects influence the magnitude of grassland invasion. J Ecol 101:1114–1123. doi: 10.1111/1365-2745.12128 CrossRefGoogle Scholar
  47. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  48. Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186. doi: 10.1890/0012-9658(1999)080[1180:MIECEO]2.0.CO;2
  49. Matthews JW, Clay K, Feb N (2001) Influence of fungal endophyte infection on plant-soil feedback and community interactions. Ecology 82:500–509Google Scholar
  50. Mitchell CE, Agrawal AA, Bever JD et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740. doi: 10.1111/j.1461-0248.2006.00908.x CrossRefPubMedGoogle Scholar
  51. Mooney HA, Hobbs RJ (2000) Global change and invasive species: where do we go from here. In: Hobbs RJ (ed) Invasive species in a changing world. Island Press, Washington, DC, pp 425–434Google Scholar
  52. Oesterheld M, Sala OE (1990) Effects of grazing on seedling establishment: the role of seed and safe-site availability. J Veg Sci 1:353–358. doi: 10.2307/3235711 CrossRefGoogle Scholar
  53. Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81. doi: 10.1038/35051070 CrossRefPubMedGoogle Scholar
  54. Omacini M, Eggers T, Bonkowski M et al (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232. doi: 10.1111/j.1365-2435.2006.01099.x CrossRefGoogle Scholar
  55. Omacini M, Chaneton EJ, Bush L, Ghersa CM (2009) A fungal endosymbiont affects host plant recruitment through seed- and litter-mediated mechanisms. Funct Ecol 23:1148–1156. doi: 10.1111/j.1365-2435.2009.01582.x CrossRefGoogle Scholar
  56. Orr SP, Rudgers JA, Clay K (2005) Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecol 181:153–165. doi: 10.1007/s11258-005-5698-6 CrossRefGoogle Scholar
  57. Parodi LR (1930) Ensayo fitosociológico sobre el partido de Pergamino. Rev Fac Agron Vet B Aires 7:65–271Google Scholar
  58. Perelman SB, Leon RJC, Oesterheld M (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89:562–577CrossRefGoogle Scholar
  59. Perelman SB, Chaneton EJ, Batista WB et al (2007) Habitat stress, species pool size and biotic resistance influence exotic plant richness in the Flooding Pampa grasslands. J Ecol 95:662–673. doi: 10.1111/j.1365-2745.2007.01255.x CrossRefGoogle Scholar
  60. Pérez LI, Gundel PE, Ghersa CM, Omacini M (2013) Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol 6:379–386. doi: 10.1016/j.funeco.2013.06.006 CrossRefGoogle Scholar
  61. Ponce MA, Bompadre MJ, Scervino JM et al (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253. doi: 10.1016/j.bse.2009.03.010 CrossRefGoogle Scholar
  62. Pringle A, Bever JD, Gardes M et al (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715. doi: 10.1146/annurev.ecolsys.39.110707.173454 CrossRefGoogle Scholar
  63. R Development Core Team (2007) R: a language and environment for statistical computing. R Development Core Team, ViennaGoogle Scholar
  64. Rabe-Hesketh S, Skrondal A (2012) Dichotomous or binary responses. In: Multilevel and longitudinal modeling using stata, vol II, 3rd edn. Stata Press, pp 501–574Google Scholar
  65. Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181CrossRefGoogle Scholar
  66. Richardson DM, Allsopp N, D’Antonio CM et al (2000) Plant invasions-the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93CrossRefPubMedGoogle Scholar
  67. Rodríguez A, Jacobo E, Deregibus VA (1998) Germination behaviour of Italian ryegrass in flooding pampa rangelands. Seed Sci Res 8:521–528CrossRefGoogle Scholar
  68. RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA.
  69. Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124. doi: 10.1016/j.fbr.2007.05.002 CrossRefGoogle Scholar
  70. Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97:247–255. doi: 10.1111/j.1365-2745.2008.01478.x CrossRefGoogle Scholar
  71. Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51. doi: 10.1046/j.1461-0248.2003.00543.x CrossRefGoogle Scholar
  72. Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463–471. doi: 10.1007/s00442-005-0039-y CrossRefPubMedGoogle Scholar
  73. Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant–fungal symbiosis. Ecology 88:18–25CrossRefPubMedGoogle Scholar
  74. Rudgers JA, Fischer S, Clay K (2010) Managing plant symbiosis: fungal endophyte genotype alters plant community composition. J Appl Ecol 47:468–477. doi: 10.1111/j.1365-2664.2010.01788.x CrossRefGoogle Scholar
  75. Saikkonen K, Ruokolainen K, Huitu O et al (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5CrossRefGoogle Scholar
  76. Sala OE, Oesterheld M, León RJC, Soriano A (1986) Grazing effects upon plant community structure in subhumid grasslands of Argentina. Vegetatio 67:27–32. doi: 10.1007/BF00040315 Google Scholar
  77. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340. doi: 10.1146/annurev.arplant.55.031903.141735 CrossRefPubMedGoogle Scholar
  78. Semmartin M, Oyarzabal M, Loreti J, Oesterheld M (2007) Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecol 32:416–428. doi: 10.1111/j.1442-9993.2007.01706.x CrossRefGoogle Scholar
  79. Semmartin M, Bella C, Salamone I et al (2010) Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms. Plant Soil 328:471–481. doi: 10.1007/s11104-009-0126-7 CrossRefGoogle Scholar
  80. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368. doi: 10.1890/08-1034.1 CrossRefPubMedGoogle Scholar
  81. Shipley B (2013) The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94:560–564. doi: 10.1890/12-0976.1 CrossRefPubMedGoogle Scholar
  82. Suding KN, Harpole WS, Fukami T et al (2013) Consequences of plant—soil feedbacks in invasion. J Ecol 101:298–308. doi: 10.1111/1365-2745.12057 CrossRefGoogle Scholar
  83. Sugawara K, Inoue T, Yamashita M, Ohkubo H (2006) Distribution of the endophytic fungus, Neotyphodium occultans in naturalized Italian ryegrass in western Japan and its production of bioactive alkaloids known to repel insect pests. Grassl Sci 52:147–154. doi: 10.1111/j.1744-697X.2006.00060.x CrossRefGoogle Scholar
  84. Taboada MA, Lavado RS (1993) Influence of cattle trampling on soil porosity under alternate dry and ponded conditions. Soil Use Manag 9:139–143. doi: 10.1111/j.1475-2743.1993.tb00943.x CrossRefGoogle Scholar
  85. Tilman D (2001) Functional diversity. Encycl Biodivers 3:109–120CrossRefGoogle Scholar
  86. Tognetti PM, Chaneton EJ, Omacini M et al (2010) Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biol Conserv 143:2494–2503. doi: 10.1016/j.biocon.2010.06.016 CrossRefGoogle Scholar
  87. Uchitel A, Omacini M, Chaneton E (2011) Inherited fungal symbionts enhance establishment of an invasive annual grass across successional habitats. Oecologia 165:465–475. doi: 10.1007/s00442-010-1740-z CrossRefPubMedGoogle Scholar
  88. Uesugi A, Kessler A (2016) Herbivore release drives parallel patterns of evolutionary divergence in invasive plant phenotypes. J Ecol. doi: 10.1111/1365-2745.12542
  89. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091. doi: 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2
  90. Vázquez-de-Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2012) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213. doi: 10.1007/s11104-012-1283-7 CrossRefGoogle Scholar
  91. Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B et al (2013) Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS ONE 8:1–14. doi: 10.1371/journal.pone.0084539 CrossRefGoogle Scholar
  92. Vecchio MC, Golluscio RA, Cordero MI (2008) Cálculo de la receptividad ganadera a escala de potrero en pastizales de la Pampa Deprimida. Ecol Austral 18:213–222Google Scholar
  93. Vellinga EC, Wolfe BE, Pringle A (2009) Global patterns of ectomycorrhizal introductions. New Phytol 181:960–973. doi: 10.1038/ng.473 CrossRefPubMedGoogle Scholar
  94. Williams R, Bartholomew P (2005) Factors affecting Italian ryegrass (Lolium multiflorum L.) seed distribution. In: Murphy JJ (ed) Utilization of grazed grass in temperate animal systems. Wageningen Academic Publishers, Wageningen, p 248Google Scholar
  95. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cecilia Casas
    • 1
    • 2
    • 3
  • Pedro E. Gundel
    • 2
  • María Semmartin
    • 2
  • Hans Schnyder
    • 3
  • Marina Omacini
    • 2
  1. 1.Soil Science Department, Faculty of AgronomyUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.IFEVA - CONICET/Department of Ecology, Faculty of AgronomyUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.Lehrstuhl für GrünlandlehreTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations