Biological Invasions

, Volume 18, Issue 9, pp 2635–2647 | Cite as

Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions

  • Peter Mueller
  • Rachel N. Hager
  • Justin E. Meschter
  • Thomas J. Mozdzer
  • J. Adam Langley
  • Kai Jensen
  • J. Patrick Megonigal
Phragmites Invasion


Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects to invasion can be difficult in observational studies. Here, we assessed the impact of Phragmites australis invasion into native shortgrass communities on methane (CH4) emissions by conducting field measurements of CH4 emissions along transects of invasion by Phragmites in two neighboring brackish marsh sites and compared these findings to those from a field-based mesocosm experiment. We found remarkable differences in CH4 emissions and the influence of Phragmites on CH4 emissions between the two neighboring marsh sites. While Phragmites consistently increased CH4 emissions dramatically by 10.4 ± 3.7 µmol m−2 min−1 (mean ± SE) in our high-porewater CH4 site, increases in CH4 emissions were much smaller (1.4 ± 0.5 µmol m−2 min−1) and rarely significant in our low-porewater CH4 site. While CH4 emissions in Phragmites-invaded zones of both marsh sites increased significantly, the presence of Phragmites did not alter emissions in a complementary mesocosm experiment. Seasonality and changes in temperature and light availability caused contrasting responses of CH4 emissions from Phragmites- versus native zones. Our data suggest that Phragmites-mediated CH4 emissions are particularly profound in soils with innately high rates of CH4 production. We demonstrate that the effects of invasive species on ecosystem processes such as GHG emissions may be predictable qualitatively but highly variable quantitatively. Therefore, generalizations cannot be made with respect to invader-ecosystem processes, as interactions between the invader and local abiotic conditions that vary both spatially and temporally on the order of meters and hours, respectively, can have a stronger impact on GHG emissions than the invader itself.


Phragmites Methane emissions Spartina patens Blue carbon Tidal wetlands 



We thank J. Duls, A. Peresta, G. Peresta, J. Hays, E. Hazelton, J. Caplan, J. Shapiro, B. Bernal, F. Leech, C. Bauer, E. Geoghegan, L. Aoki, S. Pitz and K. Pannier for their help with field and lab work. Further, we want to thank two anonymous reviewers for their helpful comments that greatly improved our manuscript. Financial support was provided to P. Mueller through the Smithsonian Institution’s Graduate Student Fellowship Program and the University of Hamburg. Financial support was provided to J. Meschter through the Maryland Sea Grant Fellowship Program. The field study was supported by the Student Research Grant Program of the Society of Wetland Scientists provided to P. Mueller, the Howard Hughes Medical Institute Science Horizons Internship provided to R. Hager, the Bryn Mawr College, and the Smithsonian Environmental Research Center. Funding for the lab work was provided by Bryn Mawr College.


  1. Arkebauer TJ, Chanton JP, Verma SB, Kim J (2001) Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland. Am J Bot 88:653–658. doi: 10.2307/2657065 CrossRefPubMedGoogle Scholar
  2. Armstrong J, Armstrong W, Beckett PM et al (1996) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot 54:177–197. doi: 10.1016/0304-3770(96)01044-3 CrossRefGoogle Scholar
  3. Báldi A (1999) Microclimate and vegetation edge effects in a reedbed in Hungary. Biodivers Conserv 8:1697–1706. doi: 10.1023/A:1008901514944 CrossRefGoogle Scholar
  4. Bart D, Burdick D, Chambers R, Hartman JM (2006) Human facilitation of Phragmites australis invasions in tidal marshes: a review and synthesis. Wetl Ecol Manag 14:53–65. doi: 10.1007/s11273-005-2566-z CrossRefGoogle Scholar
  5. Brix H, Sorrell BK, Schierup H-H (1996) Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat Bot 54:151–163. doi: 10.1016/0304-3770(96)01042-X CrossRefGoogle Scholar
  6. Chambers RM, Mozdzer TJ, Ambrose JC (1998) Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquat Bot 62:161–169. doi: 10.1016/S0304-3770(98)00095-3 CrossRefGoogle Scholar
  7. Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273. doi: 10.1016/S0304-3770(99)00055-8 CrossRefGoogle Scholar
  8. Cheng X, Peng R, Chen J et al (2007) CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere 68:420–427. doi: 10.1016/j.chemosphere.2007.01.004 CrossRefPubMedGoogle Scholar
  9. Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36. doi: 10.1046/j.1365-3040.2003.00846.x CrossRefGoogle Scholar
  10. Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8. doi: 10.5194/bgd-1-659-2004 CrossRefGoogle Scholar
  11. Emery HE, Fulweiler RW (2014) Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquat Bot 116:83–92. doi: 10.1016/j.aquabot.2014.01.010 CrossRefGoogle Scholar
  12. Keller JK, Wolf AA, Weisenhorn PB et al (2009) Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96:101–117. doi: 10.1007/s10533-009-9347-3 CrossRefGoogle Scholar
  13. Keller JK, Sutton-Grier AE, Bullock AL, Megonigal JP (2012) Anaerobic metabolism in tidal freshwater wetlands: I. Plant removal effects on iron reduction and methanogenesis. Estuaries Coasts 36:457–470. doi: 10.1007/s12237-012-9527-6 CrossRefGoogle Scholar
  14. Langley JA, Mozdzer TJ, Shepard KA et al (2013) Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob Chang Biol 19:1495–1503. doi: 10.1111/gcb.12147 CrossRefGoogle Scholar
  15. Martin RM, Moseman-Valtierra S (2015) Greenhouse gas fluxes vary between Phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands 35:1021–1031. doi: 10.1007/s13157-015-0690-y CrossRefGoogle Scholar
  16. McCormick MK, Kettenring KM, Baron HM, Whigham DF (2010) Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake bay, Maryland (USA). Wetlands 30:67–74. doi: 10.1007/s13157-009-0007-0 CrossRefGoogle Scholar
  17. Mcleod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi: 10.1890/l CrossRefGoogle Scholar
  18. Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424Google Scholar
  19. Minke M, Augustin J, Hagemann U, Joosten H (2014) Similar methane fluxes measured by transparent and opaque chambers point at belowground connectivity of Phragmites australis beyond the chamber footprint. Aquat Bot 113:63–71. doi: 10.1016/j.aquabot.2013.11.006 CrossRefGoogle Scholar
  20. Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  21. Mozdzer TJ, Megonigal JP (2013) Increased methane emissions by an introduced Phragmites australis lineage under global change. Wetlands 33:609–615. doi: 10.1007/s13157-013-0417-x CrossRefGoogle Scholar
  22. Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458. doi: 10.1111/j.1365-2745.2009.01625.x CrossRefGoogle Scholar
  23. Mozdzer TJ, Zieman JC, McGlathery KJ (2010) Nitrogen uptake by native and invasive temperate coastal macrophytes: importance of dissolved organic nitrogen. Estuaries Coasts 33:784–797. doi: 10.1007/s12237-009-9254-9 CrossRefGoogle Scholar
  24. Mozdzer TJ, Brisson J, Hazelton ELG (2013) Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages. AoB Plants 5:plt048–plt048. doi: 10.1093/aobpla/plt048 CrossRefPubMedCentralGoogle Scholar
  25. Mozdzer TJ, Langley JA, Mueller P, Megonigal JP Deep rooting and global change facilitate spread of invasive grass. Biol InvasionsGoogle Scholar
  26. Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–1013. doi: 10.1007/s10021-015-9879-4 CrossRefGoogle Scholar
  27. Olsson L, Ye S, Yu X et al (2015) Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences 12:4965–4977. doi: 10.5194/bg-12-4965-2015 CrossRefGoogle Scholar
  28. Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842. doi: 10.1007/s13157-011-0197-0 CrossRefGoogle Scholar
  29. Rooth JE, Stevenson JC, Cornwell JC (2003) Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26:475–483. doi: 10.1007/BF02823724 CrossRefGoogle Scholar
  30. Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43:413–420. doi: 10.1016/j.soilbio.2010.11.009 CrossRefGoogle Scholar
  31. Tanaka N, Yutani K, Aye T, Jinadasa KBSN (2007) Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature. Hydrobiologia 583:165–172. doi: 10.1007/s10750-006-0483-7 CrossRefGoogle Scholar
  32. Tong C, Wang WQ, Huang JF et al (2012) Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland. Biogeochemistry 111:677–693. doi: 10.1007/s10533-012-9712-5 CrossRefGoogle Scholar
  33. Valéry L, Bouchard V, Lefeuvre J-C (2004) Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands 24:268–276. doi: 10.1672/0277-5212(2004)024[0268:IOTINS]2.0.CO;2 CrossRefGoogle Scholar
  34. Van Der Nat F-JWA, Middelburg JJ, Van Meteren D, Wielemakers A (1998) Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry 41:1–22. doi: 10.1023/A:1005933100905 CrossRefGoogle Scholar
  35. Windham L, Lathrop R (1999) Effect of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of Mullica River, New Jersey. Estuaries 22:927–935. doi: 10.2307/1353072 CrossRefGoogle Scholar
  36. Windham-Myers L (2005) Dissolved inorganic nitrogen pools and surface flux under different brackish marsh vegetation types, common reed (Phragmites australis) and salt hay (Spartina patens). Biogeochemistry 75:289–304. doi: 10.1007/s10533-004-7587-9 CrossRefGoogle Scholar
  37. Yuan J, Ding W, Liu D et al (2015) Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580. doi: 10.1111/gcb.12797 CrossRefPubMedGoogle Scholar
  38. Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. CRC Crit Rev Plant Sci 23:431–452. doi: 10.1080/07352680490514673 CrossRefGoogle Scholar
  39. Zhang Y, Ding W, Cai Z et al (2010) Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmos Environ 44:4588–4594. doi: 10.1016/j.atmosenv.2010.08.012 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Mueller
    • 1
  • Rachel N. Hager
    • 2
    • 5
  • Justin E. Meschter
    • 3
    • 4
  • Thomas J. Mozdzer
    • 5
  • J. Adam Langley
    • 6
  • Kai Jensen
    • 1
  • J. Patrick Megonigal
    • 4
  1. 1.Applied Plant Ecology, Biocenter Klein FlottbekUniversity of HamburgHamburgGermany
  2. 2.Ecology Center and Department of Watershed SciencesUtah State UniversityLoganUSA
  3. 3.Department of Environmental Science and TechnologyUniversity of MarylandCollege ParkUSA
  4. 4.Smithsonian Environmental Research CenterEdgewaterUSA
  5. 5.Department of BiologyBryn Mawr CollegeBryn MawrUSA
  6. 6.Department of BiologyVillanova UniversityVillanovaUSA

Personalised recommendations