Biological Invasions

, Volume 18, Issue 3, pp 841–855 | Cite as

Temporal genetic dynamics among mosquitofish (Gambusia holbrooki) populations in invaded watersheds

  • David Díez-del-Molino
  • Rosa-Maria Araguas
  • Manuel Vera
  • Oriol Vidal
  • Nuria Sanz
  • Jose-Luis García-Marín
Original Paper


The temporal components of genetic diversity and geographical structure of invasive mosquitofish populations are poorly known. Through the genetic monitoring of four consecutive cohorts of Gambusia holbrooki from three different river basins we aimed to determine temporal patterns of regional genetic variation and dispersal rates within invasive populations. Despite showing evidence of strong population size fluctuations, genetic diversity levels were maintained among local cohorts. We only detected temporal allele frequency changes associated with seasonal flooding that did not modify major trends on population structure among cohorts. Downstream gene flow coupled with increased connectivity at lowland locations to increase genetic diversity levels in these areas. A large proportion of local fish (up to 50 %) were dispersers, often originated from locations within the same river basin. High dispersal capability, ecological tolerance, and reproductive traits likely promote river colonization. Finally, our results also confirmed that human-assisted translocations promote within and among basin gene flow and maintained levels of genetic diversity, particularly in upstream locations.


Genetic diversity Temporal variation Population structure Gambusia holbrooki Invasive species 



We wish to thank Gerard Carmona-Catot for helping with sampling procedures, and Francesca Rivas for assistance in laboratory. We also thank the two anonymous reviewers for their constructive comments which helped us to improve the manuscript. This work has been possible thank to the financial support of the former Spanish Ministry of Economy and Competitiveness (MINECO, CGL2009-12877-C02-02). DDM held a Ph.D. scholarship from the University of Girona (UdG, BR10/12).


  1. Alcaraz C, García-Berthou E (2007) Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biol Conserv 139(1–2):83–92CrossRefGoogle Scholar
  2. Alcaraz C, Bisazza A, García-Berthou E (2008) Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia 155(1):205–213CrossRefPubMedGoogle Scholar
  3. Alemadi SD, Jenkins DG (2007) Behavioral constraints for the spread of the Eastern mosquitofish, Gambusia holbrooki (Poeciliidae). Biol Invasions 10(1):59–66CrossRefGoogle Scholar
  4. Araguas RM, Roldan MI, García-Marín JL, Pla C (2007) Management of gene diversity in the endemic killifish Aphanius iberus: revising operational conservation units. Ecol Freshw Fish 16(2):257–266CrossRefGoogle Scholar
  5. Ayres RM, Pettigrove VJ, Hoffmann A (2010) Low diversity and high levels of population genetic structuring in introduced eastern mosquitofish (Gambusia holbrooki) in the greater Melbourne area, Australia. Biol Invasions 12(11):3727–3744CrossRefGoogle Scholar
  6. Ayres R, Pettigrove V, Hoffmann A (2013) Genetic structure and diversity of introduced eastern mosquitofish (Gambusia holbrooki) in south-eastern Australia. Mar Freshw Res 63:1206–1214CrossRefGoogle Scholar
  7. Baber MJ, Childers DL, Babbitt KJ, Anderson DH (2002) Controls on fish distribution and abundance in temporary wetlands. Can J Fish Aquat Sci 59(9):1441–1450CrossRefGoogle Scholar
  8. Barson NJ, Cable J, Van Oosterhout C (2009) Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source -sink metapopulation structure, founder events and population bottlenecks. J Evol Biol 22:485–497CrossRefPubMedGoogle Scholar
  9. Bassar RD, Marshall MC, Lopez-Sepulcre A, Zandona E, Auer SK, Travis J, Pringle CM, Flecker AS, Thomas SA, Fraser DF, Reznick DN (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proc Natl Acad Sci USA 107:3616–3621PubMedCentralCrossRefPubMedGoogle Scholar
  10. Benejam L, Benito J, García-Berthou E (2009) Decreases in condition and fecundity of freshwater fishes in a highly polluted reservoir. Water Air Soil Pollut 210(1–4):231–242Google Scholar
  11. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Ann Stat 57:289–300Google Scholar
  12. Buisson L, Thuiller W, Lek S, Lim P, Grenouillet G (2008) Climate change hastens the turnover of stream fish assemblages. Glob Change Biol 14(10):2232–2248CrossRefGoogle Scholar
  13. Cabral J (1999) Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the lower Mondego River Valley, western Portugal. Acta Oecol 20(6):607–620CrossRefGoogle Scholar
  14. Carmona-Catot G, Benito J, García-Berthou E (2011) Comparing latitudinal and upstream-downstream gradients: life history traits of invasive mosquitofish. Divers Distrib 17(2):214–224CrossRefGoogle Scholar
  15. Carmona-Catot G, Magellan K, García-Berthou E (2013) Temperature-specific competition between invasive mosquitofish and an endangered cyprinodontid fish. PLoS ONE 8(1):e54734PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chapman P, Warburton K (2006) Postflood movements and population connectivity in gambusia (Gambusia holbrooki). Ecol Freshw Fish 15(4):357–365CrossRefGoogle Scholar
  17. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  18. Congdon B (1994) Salinity-related fitness differences amongst GPI genotypes in the mosquitofish Gambusia holbrooki (Poeciliidae: Teleostei). Biol J Linn Soc 53:343–352CrossRefGoogle Scholar
  19. Congdon BC (1995) Unidirectional gene flow and maintenance of genetic diversity in mosquitofish Gambusia holbrooki (Teleostei: Poeciliidae). Copeia 1995(1):162–172CrossRefGoogle Scholar
  20. Deacon AE, Ramnarine IW, Magurran AE (2011) How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6(9):e24416PubMedCentralCrossRefPubMedGoogle Scholar
  21. Defaveri J, Viitaniemi H, Leder E, Meril J (2013) Characterizing genic and nongenic molecular markers: comparison of microsatellites and SNPs. Mol Ecol Resour 13:377–392CrossRefPubMedGoogle Scholar
  22. Díez-del-Molino D, Carmona-Catot G, Araguas R-M, Vidal O, Sanz N, García-Berthou E, García-Marín JL (2013) Gene flow and maintenance of genetic diversity in invasive mosquitofish (Gambusia holbrooki). PLoS ONE 8(12):e82501PubMedCentralCrossRefPubMedGoogle Scholar
  23. Duggan IC, Rixon CAM, MacIsaac HJ (2006) Popularity and propagule pressure: determinants of introduction and establishment of aquarium fish. Biol Invasions 8(2):377–382CrossRefGoogle Scholar
  24. Echelle A, Wildrick D, Echelle A (1989) Allozyme studies of genetic variation in Poeciliid fishes. In: Meffe G, Snelson F (eds) Ecology and evolution of livebearing fishes, vol 1991., Prentice HallEnglenwood Cliffs, New Jersey, pp 217–234Google Scholar
  25. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  26. Fernández-Delgado C (1989) Life-history patterns of the mosquitofish, Gambusia affinis, in the estuary of the Guadalquivir River of south-west Spain. Freshw Biol 22(3):395–404CrossRefGoogle Scholar
  27. Fernández-Delgado C, Rossomanno S, Fernández-Delgado C (1997) Reproductive biology of the mosquitofish in a permanent natural lagoon in south-west Spain: two tactics for one species. J Fish Biol 51(1):80–92CrossRefPubMedGoogle Scholar
  28. Gamradt SC, Kats LB (1996) Effect of introduced crayfish and mosquitofish on California newts. Conserv Biol 10:1155–1162CrossRefGoogle Scholar
  29. García-Marín J, Jorde P, Ryman N, Utter F, Pla C (1991) Management implications of genetic differentiation between native and hatchery populations of brown trout (Salmo trutta) in Spain. Aquaculture 95(3–4):235–249CrossRefGoogle Scholar
  30. Giblein AL, Deque M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339Google Scholar
  31. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3).
  32. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22(3):534–543CrossRefPubMedGoogle Scholar
  33. Hernandez-Martich J, Smith M (1997) Downstream gene flow and genetic structure of Gambusia holbrooki (eastern mosquitofish) populations. Heredity 79(3):295–301CrossRefGoogle Scholar
  34. Humphries S, Ruxton G (2002) Is there really a drift paradox? J Anim Ecol 1995:151–154CrossRefGoogle Scholar
  35. Jordan F, Babbitt K, Mclvor C (1998) Seasonal variation in habitat use by marsh fishes. Ecol Freshw Fish 7:159–166CrossRefGoogle Scholar
  36. Kolbe JJ, Glor RE, Rodrıguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431(7005):177–181CrossRefPubMedGoogle Scholar
  37. Krumholz L (1948) Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control. Ecol Monogr 18(1):1–43CrossRefGoogle Scholar
  38. Langerhans RB, Gifford ME, Joseph EO (2007) Ecological speciation in Gambusia fishes. Evolution 61:2056–2074CrossRefPubMedGoogle Scholar
  39. Lindholm AK, Breden F, Alexander HJ, Chan W-K, Thakurta SG, Brooks R (2005) Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol Ecol 14(12):3671–3682CrossRefPubMedGoogle Scholar
  40. McClenaghan L, Smith M, Smith M (1985) Biochemical genetics of mosquitofish. IV. Changes of allele frequencies through time and space. Evolution 39(2):451–460CrossRefGoogle Scholar
  41. McElroy T, Kandl K, Trexler J (2011) Temporal population genetic structure of eastern mosquitofish in a dynamic aquatic landscape. J Hered 102(6):678–687CrossRefPubMedGoogle Scholar
  42. Meffe GK, Weeks SC, Mulvey M, Kandl KL (1995) Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki Poeciliidae) from ambient and thermal ponds. Can J Fish Aquat Sci 52:2704–2711CrossRefGoogle Scholar
  43. Müller K (1954) Die Drift in fließenden Gewassern. Arch Hydrobiol 49:539–545Google Scholar
  44. Navarro-Garcıa J (2013) De Buen family and the introduction of the “Gambusia”: environmental consequences of the fight against malaria in Spain. Boletín de Malariología y Salud Ambiental, LIII 1:99–112Google Scholar
  45. Neff BD, Pitcher TE, Ramnarine IW (2008) Inter-population variation in multiple paternity and reproductive skew in the guppy. Mol Ecol 17(12):2975–2984CrossRefPubMedGoogle Scholar
  46. Nielsen EE, Bach LA, Kotlicki P (2006) Hybridlab (Version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6(4):971–973CrossRefGoogle Scholar
  47. Ormerod SJ (2009) Climate change, river conservation and the adaptation challenge. Aquat Conserv 19:609–613CrossRefGoogle Scholar
  48. Oscoz J, Miranda R, Leunda P (2008) Additional records of eastern mosquitofish Gambusia holbrooki (Girard, 1859) for the River Ebro basin (Spain). Aquat Invasions 3(1):108–112CrossRefGoogle Scholar
  49. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  50. Perez-Bote JL, Lopez MT (2005) Life-history pattern of the introduced eastern mosquitofish, Gambusia holbrooki (Baird and Girard, 1854), in a Mediterranean-type river: the River Guadiana (SW Iberian Peninsula). Ital J Zool 72(3):241–248CrossRefGoogle Scholar
  51. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95(6):536–539CrossRefPubMedGoogle Scholar
  52. Pullin AS, Baldi A, Can OE, Dieterich M, Kati V, Livoreil B, Lovei G, Mihok B, Nevin O, Selva N, Sousa-Pinto I (2009) Conservation focus on Europe: major conservation policy issues that need to be informed by conservation science. Conserv Biol 23(4):818–824CrossRefPubMedGoogle Scholar
  53. Purcell KM, Stockwell CA (2014) An evaluation of the genetic structure and post-introduction dispersal of a non-native invasive fish to the North Island of New Zealand. Biol Invasions 17(2):625–636CrossRefGoogle Scholar
  54. Purcell KM, Ling N, Stockwell CA (2012) Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biol Invasions 14(10):2057–2065CrossRefGoogle Scholar
  55. Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4(22):4399–4428PubMedCentralPubMedGoogle Scholar
  56. Pyke GHG (2005) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fisher 15(4):339–365CrossRefGoogle Scholar
  57. Pyke CR, Thomas R, Porter RD, Hellmann JJ, Dukes JS, Lodge DM, Chavarria G (2008) Current practices and future opportunities for policy on climate change and invasive species. Conserv Biol 22(3):585–592CrossRefPubMedGoogle Scholar
  58. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94(17):9197–9201PubMedCentralCrossRefPubMedGoogle Scholar
  59. Rehage JS, Sih A (2004) Dispersal behavior, boldness, and the link to invasiveness: a comparison of four Gambusia species. Biol Invasions 6(3):379–391CrossRefGoogle Scholar
  60. Reznick D, Ghalambor C (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198CrossRefPubMedGoogle Scholar
  61. Reznick D, Bryga H, Endler J (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359CrossRefGoogle Scholar
  62. Reznick D, Shaw F, Rodd F, Shaw R (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937CrossRefPubMedGoogle Scholar
  63. Rincon PA, Correas AM, Morcillo F, Risueno P, Lobon-Cervia J (2002) Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. J Fish Biol 61(6):1560–1585CrossRefGoogle Scholar
  64. Ross CT, Weise JA, Bonnar S, Nolin D, Satkoski Trask J, Smith DG, Ferguson B, Ha J, Kubisch HM, Vinson A, Kanthaswamy S (2014) An empirical comparison of short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) for relatedness estimation in Chinese rhesus macaques (Macaca mulatta). Am J Primatol 76:313–324PubMedCentralCrossRefPubMedGoogle Scholar
  65. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  66. Ruetz CRC, Trexler JJC, Jordan F, Loftus WF, Perry SA (2005) Population dynamics of wetland fishes: spatio-temporal patterns synchronized by hydrological disturbance? J Anim Ecol 74(2):322–332CrossRefGoogle Scholar
  67. Sanz N, Araguas RM, Vidal O, Díez-del-Molino D, Fernandez-Cebrian R, García-Marín JL (2013) Genetic characterization of the invasive mosquitofish (Gambusia spp.) introduced to Europe: population structure and colonization routes. Biol Invasions 15(10):2333–2346CrossRefGoogle Scholar
  68. Scribner K, Avise J (1993) Cytonuclear genetic architecture in mosquitofish populations and the possible roles of introgressive hybridization. Mol Ecol 2:139–149CrossRefGoogle Scholar
  69. Serra Ruiz P (2006) Localització dels conreus irrigats de la plana de l’ Alt i el Baix Empordà a través de l’ anàlisi geohistòrica i de la teledetecció. Doc Anal Geogr 48:123–148Google Scholar
  70. Serrano A, Garcıa JA, Mateos VL, Cancillo ML, Garrido J (1999) Monthly modes of variation of precipitation over the Iberian Peninsula. J Clim 12:2894–2919CrossRefGoogle Scholar
  71. Sholdt LL, Ehrhardt DA, Michael AG (1972) A guide to the use of the mosquito fish, Gambusia affinis for mosquito control. Navy Environmental and Preventive Medicine Unit No. 2Google Scholar
  72. Smith M, Scribner K, Hernandez J, Wooten M (1989) Demographic, spatial, and temporal genetic variation in Gambusia. In: Meffe G, Snelson F (eds) Ecology and evolution of livebearing fishes, vol 220., Prentice HallEnglenwood Cliffs, New Jersey, pp 235–257Google Scholar
  73. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9(10):1517–1528CrossRefPubMedGoogle Scholar
  74. Stearns SC (1983) A natural experiment in life-history evolution: field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution 37:601–617CrossRefGoogle Scholar
  75. Stockwell C, Henkanaththegedara S (2011) Evolutionary conservation biology. In: Evans JP, Pilastro A, Schlupp I (eds) Ecology and evolution of Poeciliid fishes. University of Chicago Press, Chicago, pp 128–141Google Scholar
  76. Stockwell CA, Vinyard GL (2000) Life history variation in recently established populations of western mosquitofish (Gambusia affinis). West North Am Nat 60:273–280Google Scholar
  77. Stockwell CA, Weeks SC (1999) Translocations and rapid evolutionary responses in recently established populations of western mosquitofish (Gambusia affinis). Anim Conserv 2(2):103–110CrossRefGoogle Scholar
  78. Tatara CP (1999) Genetic and demographic responses of mosquitofish (Gambusia holbrooki) populations exposed to mercury for multiple generations. Environ Toxicol Chem 18:2840–2845CrossRefGoogle Scholar
  79. Tatara CP, Mulvey M, Newman MC (2002) Genetic and demographic responses of mercury-exposed mosquitofish (Gambusia holbrooki) populations: temporal stability and reproductive components of fitness. Environ Toxicol Chem 21:2191–2197CrossRefPubMedGoogle Scholar
  80. Trigo RM, Pozo-Vazquez D, Osborn TJ, Castro-Dıez Y, Gamiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24(8):925–944CrossRefGoogle Scholar
  81. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538CrossRefGoogle Scholar
  82. Vidal O, García-Berthou E, Tedesco PA, García-Marín J-L (2010) Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced to Europe. Biol Invasions 12(4):841–851CrossRefGoogle Scholar
  83. Vidal O, Sanz N, Araguas R-M, Fernandez-Cebrian R, Díez-del-Molino D, García-Marín J-L (2012) SNP diversity in introduced populations of the invasive Gambusia holbrooki. Ecol Freshw Fish 21(1):100–108CrossRefGoogle Scholar
  84. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756CrossRefPubMedGoogle Scholar
  85. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370CrossRefGoogle Scholar
  86. Wooten M, Scribner K, Smith M (1988) Genetic variability and systematics of Gambusia in the southeastern United States. Copeia 1988(2):283–289CrossRefGoogle Scholar
  87. Zane L, Nelson WS, Jones AG, Avise JC (1999) Microsatellite assessment of multiple paternity in natural populations of a live-bearing fish, Gambusia holbrooki. J Evol Biol 12(1):61–69CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Genetic Ichthyology, Department of Biology, Faculty of SciencesUniversity of GironaGironaSpain
  2. 2.Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK

Personalised recommendations