Advertisement

Biological Invasions

, Volume 18, Issue 3, pp 751–761 | Cite as

Different dispersal histories of lineages of the earthworm Aporrectodea caliginosa (Lumbricidae, Annelida) in the Palearctic

  • S. V. Shekhovtsov
  • E. V. Golovanova
  • S. E. Peltek
Original Paper

Abstract

Earthworms are among the most abundant and ecologically important invasive species, and are therefore a good object for studying genetic processes in invasive populations. Aporrectodea caliginosa is one of the most widespread invasive earthworms in the temperate zone. It is believed to have dispersed from Europe to all continents except Antarctica. It is known that A. caliginosa consists of three genetic lineages, and genetic diversity is high both among and between them. We attempted to use that high genetic diversity to study A. caliginosa dispersal in the Palearctic based on a sample of 40 localities ranging from eastern Europe to the Russian Far East, and to compare our data to other studies on this species in western Europe and North America. Two genetic lineages were found in the studied sample. Only negligible decrease in genetic diversity was observed for the lineage 2 of A. caliginosa from West Europe to the Far East, suggesting multiple human-mediated introductions. In contrast, lineage 3 is abundant in West Europe and Belarus, but is absent from the East European Plain, the Urals, and the Far East. However, it is present in West Siberia, where it has greatly reduced genetic diversity, indicating long-distance dispersal accompanied by a bottleneck event. Thus, although these two lineages of A. caliginosa are morphologically indistinguishable, they have dramatic differences in their distributions and dispersal histories.

Keywords

Aporrectodea caliginosa Cosmopolite Earthworms cox1 Palearctic Genetic lineages 

Notes

Acknowledgments

We would like to thank all anonymous reviewers that helped to improve this and earlier versions of the manuscript. We are grateful to V. Ustinov and V. Gochakov for help with the collection of material and to O. Kosterin and O. Zaitseva for helpful comments on the manuscript. This study was supported by the 14-04-01121 Grant of the Russian Foundation for Basic Research, the MK-6685.2015.4 Grant of the President of the Russian Federation, and the State Contract 6.1957.2014/K.

Supplementary material

10530_2015_1045_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 48 kb)

References

  1. Baker GH, Brown R, Butt K, Curry P, Scullion J (2006) Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Biol Invasions 8:1301–1316CrossRefGoogle Scholar
  2. Bely AE, Wray GA (2004) Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrome oxidase I. Mol Phylogenet Evol 30(1):50–63CrossRefPubMedGoogle Scholar
  3. Blakemore RJ (2009) Cosmopolitan earthworms—a global and historical perspective. In: Shain DH (ed) Annelids in modern biology. Wiley-Blackwell, Hoboken, pp 257–283CrossRefGoogle Scholar
  4. Bohlen PJ, Groffman PM, Fahey TJ, Fisk MC, Suárez E, Pelletier D, Fahey R (2004) Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems 7:1–12CrossRefGoogle Scholar
  5. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1659CrossRefPubMedGoogle Scholar
  6. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  7. Fernández R, Almodóvar A, Novo M, Gutiérrez M, Díaz Cosín DJ (2011) A vagrant clone in a peregrine species: phylogeography, high clonal diversity and geographical distribution in the earthworm Aporrectodea trapezoides (Dugès, 1828). Soil Biol Biochem 43(10):2085–2093CrossRefGoogle Scholar
  8. Fernández R, Almodóvar A, Novo M, Simancas B, Díaz Cosín DJ (2012) Adding complexity to the complex: new insights into the phylogeny, diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex (Oligochaeta, Lumbricidae). Mol Phylogenet Evol 64(2):368–379CrossRefPubMedGoogle Scholar
  9. Fernández R, Almodóvar A, Novo M, Gutiérrez M, Díaz Cosín DJ (2013) Earthworms, good indicators for palaeogeographical studies? Testing the genetic structure and demographic history in the peregrine earthworm Aporrectodea trapezoides (Dugès, 1828) in southern Europe. Soil Biol Biochem 58:127–135CrossRefGoogle Scholar
  10. Fernández R, Novo M, Marchan DF, Diaz Cosin DJ (2016) Diversification patterns in cosmopolitan earthworms: similar mode but different tempo. Mol Phylogenet Evol 94:701–708CrossRefPubMedGoogle Scholar
  11. Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L, Bohlen PJ, Reich PB (2006) Earthworm invasion into previously earthworms-free temperate and boreal forests. Biol Invasions 8:1235–1245CrossRefGoogle Scholar
  12. Hendrix PF, Baker GH, Callaham MA, Damoff GA, Fragoso C, Gonzalez G, James SW, Lachnicht SL, Winsome T, Zou X (2006) Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biol Invasions 8:1287–1300CrossRefGoogle Scholar
  13. Hendrix PF, Callaham MA, Drake JM, Huang C-Y, James SW, Snyder BA, Zhang W (2008) Pandora’s box contained bait: the global problem of introduced earthworms. Ann Rev Ecol Evol Syst 39:593–613CrossRefGoogle Scholar
  14. James SW (2011) Earthworms. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, BerkeleyGoogle Scholar
  15. James SW, Porco D, Decaëns T, Richard B, Rougerie R, Erséus C (2010) DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PLoS ONE 5(12):e15629PubMedCentralCrossRefPubMedGoogle Scholar
  16. Kille P, Andre J, Anderson C, Ang HN, Bruford MW, Bundy JG, Donnely R, Hodson ME, Juma G, Lahive E, Morgan J, Stürzenbaum SR, Spurgeon DJ (2013) DNA sequence variation and methylation in an arsenic tolerant earthworm population. Soil Biol Biochem 57:524–532CrossRefGoogle Scholar
  17. King RA, Tibble AL, Symondson WOC (2008) Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol Ecol 17(21):4684–4698CrossRefPubMedGoogle Scholar
  18. Klarica J, Kloss-Brandstätter A, Traugott M, Juen A (2012) Comparing four mitochondrial genes in earthworms—implications for identification, phylogenetics, and discovery of cryptic species. Soil Biol Biochem 45:23–30CrossRefGoogle Scholar
  19. Lentzsch P, Golldack J (2006) Genetic diversity of Aporrectodea caliginosa from agricultural sites in Northeast Brandenburg, Germany. Pedobiologia 50:369–376CrossRefGoogle Scholar
  20. Michaelsen W (1903) Die geographische verbreitung der oligochaeten. Friedländer & Sohn, BerlinCrossRefGoogle Scholar
  21. Novo M, Almodóvar A, Díaz Cosín DJ (2009) High genetic divergence of hormogastrid earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: evolutionary and demographic implications. Zool Scripta 38(5):537–552CrossRefGoogle Scholar
  22. Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre. Uppsala University, UppsalaGoogle Scholar
  23. Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:133–155Google Scholar
  24. Perel TS (1979) Range and regularities in the distribution of earthworms of the USSR fauna. Nauka, MoscowGoogle Scholar
  25. Pérez-Losada M, Ricoy M, Marshall JC, Domínguez J (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 52(2):293–302CrossRefPubMedGoogle Scholar
  26. Porco D, Decaens T, Deharveng L, James SW, Skarzynski D, Erséus C, Butt KR, Richard B, Hebert PDN (2013) Biol Inv in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America. Biol Invasions 15:899–910CrossRefGoogle Scholar
  27. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic interference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  28. Saltonstall K (2011) Invasive Genotypes. In: Simberloff D, Rejmánek M (eds) Encyclopedia of Biological Invasions. University of California Press, BerkeleyGoogle Scholar
  29. Shekhovtsov SV, Golovanova EV, Peltek SE (2013) Cryptic diversity within the Nordenskiold’s earthworm, Eisenia nordenskioldi subsp. nordenskioldi (Lumbricidae, Annelida). Eur J Soil Biol 58:13–18CrossRefGoogle Scholar
  30. Shekhovtsov SV, Golovanova EV, Peltek SE (2014) Invasive lumbricid earthworms of kamchatka (Oligochaeta). Zool Stud 53:52CrossRefGoogle Scholar
  31. Striganova BR, Porjadina NM (2005) Soil animal population in boreal forests of West-Siberian plain. KMK Scientific Press Ltd., MoscowGoogle Scholar
  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  33. Tarasov PE, Volkova VS, Webb T III, Guiot J, Andreev AA, Beszusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620CrossRefGoogle Scholar
  34. Terhivuo J, Saura A (2006) Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol Inv 8:1205–1218CrossRefGoogle Scholar
  35. Tiunov AV, Hale CM, Holdsworth HM, Vsevolodova-Perel TS (2006) Invasion patterns of Lumbricidae into the previously earthworm-free areas of northeastern Europe and the western Great Lakes region of North America. Biol Invasions 8:1223–1234CrossRefGoogle Scholar
  36. Vsevolodova-Perel TS (1997) The earthworms of the fauna of Russia. Nauka, MoscowGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. V. Shekhovtsov
    • 1
  • E. V. Golovanova
    • 2
  • S. E. Peltek
    • 1
  1. 1.Laboratory of Molecular BiotechnologyInstitute of Cytology and Genetics SB RASNovosibirskRussia
  2. 2.Omsk State Pedagogical UniversityOmskRussia

Personalised recommendations