Biological Invasions

, Volume 18, Issue 3, pp 731–749 | Cite as

Impacts of the invader giant reed (Arundo donax) on riparian habitats and ground arthropod communities

  • Alberto Maceda-Veiga
  • Helena Basas
  • Gerard Lanzaco
  • Miquel Sala
  • Adolfo de Sostoa
  • Antoni Serra
Original Paper


Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetation.


Weed Exotic plant Decomposition Alien effects Biodiversity Community structure Body size 



We are grateful to G. Webster, R. Mac Nally, T. Hefin Jones, H. Eyland, T. Belote and two anonymous reviewers for suggestions; T. Sauras, P. Fortuño and O. Canals for provision of analytical instrumentation for soil analysis; X. Font for plant taxonomy assistance; and J. Pujade, L. Mata, E. Planas, M. Blas and J. Mederos for assistance with Hymenoptera, Heteroptera, Araneae, Coleoptera and Diptera identification. AMV was funded by the Severo Ochoa Program for Centres of Excellence in R + D + I (Ref: SEV-2012-0262).

Supplementary material

10530_2015_1044_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)


  1. A’Bear AD, Boddy L, Jones TH (2012) Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob Change Biol 18:1823–1832CrossRefGoogle Scholar
  2. A’Bear AD, Johnson SN, Jones TH (2013) Putting the ‘upstairs–downstairs’ into ecosystem service: what can aboveground–belowground ecology tell us? Biol Control 75:97–107CrossRefGoogle Scholar
  3. Aguiar FCF, Ferreira MT (2013) Plant invasions in the rivers of the Iberian Peninsula, South-Western Europe–a review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 147Google Scholar
  4. Bardgett RD (2005) The biology of soil: a community and ecoystem approach. Oxford University Press, Oxford, p 256CrossRefGoogle Scholar
  5. Bastow JL, Preisser EL, Strong DR (2008) Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biol Invasions 10:191–199CrossRefGoogle Scholar
  6. Baxter CV, Fausch KD, Carl Saunders W (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220CrossRefGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300Google Scholar
  8. Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembolan based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725CrossRefGoogle Scholar
  9. Crowther TW, A’Bear D (2012) Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol 25:277–281CrossRefGoogle Scholar
  10. David JF (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118CrossRefGoogle Scholar
  11. Di Castri F, Hansen AJ, Debussche M (1990) Biological invasions in Europe and the Mediterranean Basin. Springer, Netherlands, p 352CrossRefGoogle Scholar
  12. Dudley TL (2000) Arundo donax. In: Bossard CC, Randall JM, Hoshovsky MC (eds) Invasive plants of Calfornia’s wildlands. University of California Press, Berkeley, pp 53–58Google Scholar
  13. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523CrossRefGoogle Scholar
  14. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRefGoogle Scholar
  15. Eisenbeis G, Wichard W (2012) Atlas on the biology of soil arthropods. Springer Science and Business Media, Berlin, p 437Google Scholar
  16. Endlweber K, Ruess L, Scheu S (2009) Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol Biochem 41:1151–1154CrossRefGoogle Scholar
  17. Enghoff H, Serra A, Martínez H (2009) Una nueva especie de Tarracoblaniulus Mauriès & Vicente, 1977: descripción, desarrollo postembrionario, ciclo vital y distribución espacial (Diplopoda, Julida, Blaniulidae). Graellsia 65:3–17CrossRefGoogle Scholar
  18. Figuerola B, Maceda-Veiga A, de Sostoa A (2012) Assessing the effects of sewage effluents in a Mediterranean creek: fish population features and biotic indices. Hydrobiologia 694:75–86CrossRefGoogle Scholar
  19. Font X (2014) Mòdul Flora i Vegetació. Banc de Dades de Biodiversitat de Catalunya (In Catalan). Generalitat de Catalunya i Universitat de Barcelona.
  20. Frampton GK, Van Den Brink PJ, Gould PJ (2000) Effects of spring drought and irrigation on farmland arthropods in southern Britain. J Appl Ecol 37:865–883CrossRefGoogle Scholar
  21. Ganihar SR (1997) Biomass estimates of terrestrial arthropods based on body length. J Biosci 22:219–224CrossRefGoogle Scholar
  22. Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81CrossRefGoogle Scholar
  23. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380CrossRefPubMedGoogle Scholar
  24. Going BM, Dudley TL (2008) Invasive riparian plant litter alters aquatic insect growth. Biol Invasions 10:1041–1051CrossRefGoogle Scholar
  25. González-Moreno P, Pino J, Gassó N, Vilà M (2013) Landscape context modulates alien plant invasion in Mediterranean forest edges. Biol Invasions 15:547–557CrossRefGoogle Scholar
  26. González-Moreno P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers Distrib 20:720–731CrossRefGoogle Scholar
  27. Gowing G, Recher ΗF (1985) Further comments on Length-Weight relationships of invertebrates. Aust J Ecol 10:195CrossRefGoogle Scholar
  28. Greenwood H, O’Dowd DJ, Lake PS (2004) Willow (Salix × rubens) invasion of the riparian zone in south-eastern Australia: reduced abundance and altered composition of terrestrial arthropods. Divers Distrib 10:485–492CrossRefGoogle Scholar
  29. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JM, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039CrossRefPubMedGoogle Scholar
  30. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Tilman D (2011) Plant diversity and the stability of foodwebs. Ecol Lett 14(1):42–46CrossRefPubMedGoogle Scholar
  31. Harris RJ, Toft RJ, Dugdale JS, Williams PA, Rees JS (2004) Insect assemblages in a native (kanuka-Kunzea ericoides) and an invasive (gorse-Ulex europaeus) shrubland. New Zeal J Ecol 28:35–47Google Scholar
  32. Hedde M, van Oort F, Boudon E, Abonnel F, Lamy I (2013) Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass Bioenerg 55:122–129CrossRefGoogle Scholar
  33. Hengstum T, Hooftman DA, Oostermeijer JGB, Tienderen PH (2014) Impact of plant invasions on local arthropod communities: a meta-analysis. J Ecol 102:4–11CrossRefGoogle Scholar
  34. Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invasions 5:167–177CrossRefGoogle Scholar
  35. Honnay O, Endels P, Vereecken H, Hermy M (1999) The role of patch area and habitat diversity in explaining native plant species richness in disturbed suburban forest patches in northern Belgium. Divers Distrib 5:129–141CrossRefGoogle Scholar
  36. Khuzhaev VU, Aripova SF (1994) Dynamics of the accumulation of the alkaloids of Arundo donax. Chem Nat Comp 30:637–638CrossRefGoogle Scholar
  37. Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RA, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808CrossRefGoogle Scholar
  38. Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174CrossRefPubMedGoogle Scholar
  39. Lowe S, Browne M, Boudjelas S, de Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland, New Zealand.
  40. Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314CrossRefGoogle Scholar
  41. Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiv Conserv 11:1397–1401CrossRefGoogle Scholar
  42. Maceda-Veiga A, de Sostoa A, Sánchez-Espada S (2013) Factors affecting the establishment of the invasive crayfish Procambarus clarkii (Crustacea, Decapoda) in the Mediterranean rivers of the northeastern Iberian Peninsula. Hydrobiologia 703:33–45CrossRefGoogle Scholar
  43. Mgobozi MP, Somers MJ, Dippenaar-Schoeman AS (2008) Spider responses to alien plant invasion: the effect of short- and long-term Chromolaena odorata invasion and management. J Appl Ecol 45:1189–1197Google Scholar
  44. Molinari NA, D’Antonio CM (2014) Structural, compositional and trait differences between native-and non-native-dominated grassland patches. Funct Ecol 28(3):745–754CrossRefGoogle Scholar
  45. Moreno CE (2001) Manual de métodos para medir la biodiversidad (In Spanish). Manuales y Tesis Sociedad Entomológica Aragonesa, ZaragozaGoogle Scholar
  46. Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212CrossRefGoogle Scholar
  47. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2013) Package ‘vegan’. R softwareGoogle Scholar
  48. Pennington DN, Hansel J, Blair RB (2008) The conservation value of urban riparian areas for landbirds during spring migration: land cover, scale, and vegetation effects. Biol Conserv 141(5):1235–1248CrossRefGoogle Scholar
  49. Poulette MM, Arthur MA (2011) The impact of the invasive shrub Lonicera maackii on the decomposition dynamics of a native plant community. Ecol Appl 22:412–424CrossRefGoogle Scholar
  50. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  51. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Let 9:603–614CrossRefGoogle Scholar
  52. Riffaldi R, Saviozzi A, Cardelli R, Bulleri F, Angelini L (2010) Comparison of soil organic-matter characteristics under the energy crop giant reed, cropping sequence and natural grass. Commun Soil Sci Plan 41:173–180CrossRefGoogle Scholar
  53. Romaniszyn ED, Hutchens JJ, Bruce Wallace J (2007) Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshw Biol 52(1):1–11CrossRefGoogle Scholar
  54. Sabu TK, Shiju RT, Vinod KV, Nithya S (2011) A comparison of the pitfall trap, Winkler extractor and Berlese funnel for sampling ground-dwelling arthropods in tropical montane cloud forests. J Insect Sci 11:1–19CrossRefGoogle Scholar
  55. Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954CrossRefGoogle Scholar
  56. Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJ (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794CrossRefPubMedGoogle Scholar
  57. Serra A, Guerrero L (2010) Comunitats d’artròpodes epiedàfics de les Planes de Son i la mata de València (In Catalan). In: Els sistemes naturals de les Planes de Son i la mata de València. Treballs de la Institució Catalana d’Història Natural. pp. 629–653Google Scholar
  58. Setälä H, Berg PM, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 236–249CrossRefGoogle Scholar
  59. Simão M, Flory SL, Rudgers JA (2010) Experimental plant invasion reduces arthropod abundance and richness across multiple trophic levels. Oikos 119:1553–1562CrossRefGoogle Scholar
  60. Sutherland RA (1998) Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389:153–167CrossRefGoogle Scholar
  61. Symondson WOC, Glen DM, Erickson ML et al (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crop Investigations using monoclonal antibodies. Mol Ecol 9:1279–1292CrossRefPubMedGoogle Scholar
  62. Tajovsky K (1992) Feeding biology of the millipede Glomeris hexasticha. Adv Myriapodol 10:305–311Google Scholar
  63. ter Braak CJ, Šmilauer P (2014) Topics in constrained and unconstrained ordination. Plant Ecol 1–14Google Scholar
  64. Thomas R, Vaughan I, Lello J (2013) Data analysis with R statistical software. A guidebook for scientists. Eco-explore Press. p. 149Google Scholar
  65. Torres PA, Abril AB, Bucher EH (2005) Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol Biochem 37:49–54CrossRefGoogle Scholar
  66. Tuttle NC, Beard KH, Pitt WC (2009) Invasive litter, not an invasive insectivore, determines invertebrate communities in Hawaiian forests. Biol Invasions 11:845–855CrossRefGoogle Scholar
  67. Vilà M, Espinar J, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefPubMedGoogle Scholar
  68. Walsh C, Mac Nally R (2013) Package hier.part: hierarchical partitioning, version 1.0-4. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  69. Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. CABI Publishing UNSW Press, New YorkGoogle Scholar
  70. Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829CrossRefGoogle Scholar
  71. Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefPubMedGoogle Scholar
  72. Wilkie L, Cassis G, Gray M (2007) The effects on terrestrial arthropod communities of invasion of a coastal heath ecosystem by the exotic weed bitou bush (Chrysanthemoides monilifera ssp. rotundata L.). Biol Invasions 9:477–498CrossRefGoogle Scholar
  73. Woodcock BA, Potts SG, Tscheulin T et al (2009) Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. J Appl Ecol 46:920–929CrossRefGoogle Scholar
  74. Woodward GB, Ebenman M, Emmerson J, Montoya JM, Olesen M, Valido A, Warren PH (2005) Body size in ecological networks. Trend Ecol Evol 20:402–409CrossRefGoogle Scholar
  75. Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S, Liebhold AM (2015) Comparison of insect invasions in North America, Japan and their Islands. Biol Inv 17:3049–3061CrossRefGoogle Scholar
  76. Zuefle ME, Brown WP, Tallamy DW (2008) Effects of non-native plants on the native insect community of Delaware. Biol Invasion 10:1159–1169CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alberto Maceda-Veiga
    • 1
    • 2
  • Helena Basas
    • 3
  • Gerard Lanzaco
    • 4
  • Miquel Sala
    • 4
  • Adolfo de Sostoa
    • 4
  • Antoni Serra
    • 4
  1. 1.Department of Integrative EcologyEstación Biológica de Doñana (EBD-CSIC)SevilleSpain
  2. 2.Biodiversity Research Institute (IRBio), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Animal Biodiversity Resource Centre (CRBA), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  4. 4.Department of Animal Biology and Biodiversity Research Institute (IRBio), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations