Skip to main content

Advertisement

Log in

Impacts of the invader giant reed (Arundo donax) on riparian habitats and ground arthropod communities

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A’Bear AD, Boddy L, Jones TH (2012) Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob Change Biol 18:1823–1832

    Article  Google Scholar 

  • A’Bear AD, Johnson SN, Jones TH (2013) Putting the ‘upstairs–downstairs’ into ecosystem service: what can aboveground–belowground ecology tell us? Biol Control 75:97–107

    Article  Google Scholar 

  • Aguiar FCF, Ferreira MT (2013) Plant invasions in the rivers of the Iberian Peninsula, South-Western Europe–a review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 147

  • Bardgett RD (2005) The biology of soil: a community and ecoystem approach. Oxford University Press, Oxford, p 256

    Book  Google Scholar 

  • Bastow JL, Preisser EL, Strong DR (2008) Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biol Invasions 10:191–199

    Article  Google Scholar 

  • Baxter CV, Fausch KD, Carl Saunders W (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300

    Google Scholar 

  • Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembolan based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725

    Article  CAS  Google Scholar 

  • Crowther TW, A’Bear D (2012) Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol 25:277–281

    Article  Google Scholar 

  • David JF (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118

    Article  CAS  Google Scholar 

  • Di Castri F, Hansen AJ, Debussche M (1990) Biological invasions in Europe and the Mediterranean Basin. Springer, Netherlands, p 352

    Book  Google Scholar 

  • Dudley TL (2000) Arundo donax. In: Bossard CC, Randall JM, Hoshovsky MC (eds) Invasive plants of Calfornia’s wildlands. University of California Press, Berkeley, pp 53–58

    Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Eisenbeis G, Wichard W (2012) Atlas on the biology of soil arthropods. Springer Science and Business Media, Berlin, p 437

    Google Scholar 

  • Endlweber K, Ruess L, Scheu S (2009) Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol Biochem 41:1151–1154

    Article  CAS  Google Scholar 

  • Enghoff H, Serra A, Martínez H (2009) Una nueva especie de Tarracoblaniulus Mauriès & Vicente, 1977: descripción, desarrollo postembrionario, ciclo vital y distribución espacial (Diplopoda, Julida, Blaniulidae). Graellsia 65:3–17

    Article  Google Scholar 

  • Figuerola B, Maceda-Veiga A, de Sostoa A (2012) Assessing the effects of sewage effluents in a Mediterranean creek: fish population features and biotic indices. Hydrobiologia 694:75–86

    Article  Google Scholar 

  • Font X (2014) Mòdul Flora i Vegetació. Banc de Dades de Biodiversitat de Catalunya (In Catalan). Generalitat de Catalunya i Universitat de Barcelona. http://biodiver.bio.ub.es/biocat/homepage.html

  • Frampton GK, Van Den Brink PJ, Gould PJ (2000) Effects of spring drought and irrigation on farmland arthropods in southern Britain. J Appl Ecol 37:865–883

    Article  Google Scholar 

  • Ganihar SR (1997) Biomass estimates of terrestrial arthropods based on body length. J Biosci 22:219–224

    Article  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Going BM, Dudley TL (2008) Invasive riparian plant litter alters aquatic insect growth. Biol Invasions 10:1041–1051

    Article  Google Scholar 

  • González-Moreno P, Pino J, Gassó N, Vilà M (2013) Landscape context modulates alien plant invasion in Mediterranean forest edges. Biol Invasions 15:547–557

    Article  Google Scholar 

  • González-Moreno P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers Distrib 20:720–731

    Article  Google Scholar 

  • Gowing G, Recher ΗF (1985) Further comments on Length-Weight relationships of invertebrates. Aust J Ecol 10:195

    Article  Google Scholar 

  • Greenwood H, O’Dowd DJ, Lake PS (2004) Willow (Salix × rubens) invasion of the riparian zone in south-eastern Australia: reduced abundance and altered composition of terrestrial arthropods. Divers Distrib 10:485–492

    Article  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JM, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039

    Article  PubMed  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K, Haarstad J, Tilman D (2011) Plant diversity and the stability of foodwebs. Ecol Lett 14(1):42–46

    Article  PubMed  Google Scholar 

  • Harris RJ, Toft RJ, Dugdale JS, Williams PA, Rees JS (2004) Insect assemblages in a native (kanuka-Kunzea ericoides) and an invasive (gorse-Ulex europaeus) shrubland. New Zeal J Ecol 28:35–47

    Google Scholar 

  • Hedde M, van Oort F, Boudon E, Abonnel F, Lamy I (2013) Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass Bioenerg 55:122–129

    Article  CAS  Google Scholar 

  • Hengstum T, Hooftman DA, Oostermeijer JGB, Tienderen PH (2014) Impact of plant invasions on local arthropod communities: a meta-analysis. J Ecol 102:4–11

    Article  Google Scholar 

  • Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invasions 5:167–177

    Article  Google Scholar 

  • Honnay O, Endels P, Vereecken H, Hermy M (1999) The role of patch area and habitat diversity in explaining native plant species richness in disturbed suburban forest patches in northern Belgium. Divers Distrib 5:129–141

    Article  Google Scholar 

  • Khuzhaev VU, Aripova SF (1994) Dynamics of the accumulation of the alkaloids of Arundo donax. Chem Nat Comp 30:637–638

    Article  Google Scholar 

  • Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RA, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174

    Article  PubMed  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, de Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland, New Zealand. http://www.issg.org/publications.htm#worst100)

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiv Conserv 11:1397–1401

    Article  Google Scholar 

  • Maceda-Veiga A, de Sostoa A, Sánchez-Espada S (2013) Factors affecting the establishment of the invasive crayfish Procambarus clarkii (Crustacea, Decapoda) in the Mediterranean rivers of the northeastern Iberian Peninsula. Hydrobiologia 703:33–45

    Article  CAS  Google Scholar 

  • Mgobozi MP, Somers MJ, Dippenaar-Schoeman AS (2008) Spider responses to alien plant invasion: the effect of short- and long-term Chromolaena odorata invasion and management. J Appl Ecol 45:1189–1197

    Google Scholar 

  • Molinari NA, D’Antonio CM (2014) Structural, compositional and trait differences between native-and non-native-dominated grassland patches. Funct Ecol 28(3):745–754

    Article  Google Scholar 

  • Moreno CE (2001) Manual de métodos para medir la biodiversidad (In Spanish). Manuales y Tesis Sociedad Entomológica Aragonesa, Zaragoza

    Google Scholar 

  • Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2013) Package ‘vegan’. R software

  • Pennington DN, Hansel J, Blair RB (2008) The conservation value of urban riparian areas for landbirds during spring migration: land cover, scale, and vegetation effects. Biol Conserv 141(5):1235–1248

    Article  Google Scholar 

  • Poulette MM, Arthur MA (2011) The impact of the invasive shrub Lonicera maackii on the decomposition dynamics of a native plant community. Ecol Appl 22:412–424

    Article  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. www.R-project.org

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Let 9:603–614

    Article  Google Scholar 

  • Riffaldi R, Saviozzi A, Cardelli R, Bulleri F, Angelini L (2010) Comparison of soil organic-matter characteristics under the energy crop giant reed, cropping sequence and natural grass. Commun Soil Sci Plan 41:173–180

    Article  Google Scholar 

  • Romaniszyn ED, Hutchens JJ, Bruce Wallace J (2007) Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshw Biol 52(1):1–11

    Article  Google Scholar 

  • Sabu TK, Shiju RT, Vinod KV, Nithya S (2011) A comparison of the pitfall trap, Winkler extractor and Berlese funnel for sampling ground-dwelling arthropods in tropical montane cloud forests. J Insect Sci 11:1–19

    Article  Google Scholar 

  • Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol 25:941–954

    Article  Google Scholar 

  • Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJ (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794

    Article  PubMed  Google Scholar 

  • Serra A, Guerrero L (2010) Comunitats d’artròpodes epiedàfics de les Planes de Son i la mata de València (In Catalan). In: Els sistemes naturals de les Planes de Son i la mata de València. Treballs de la Institució Catalana d’Història Natural. pp. 629–653

  • Setälä H, Berg PM, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 236–249

    Chapter  Google Scholar 

  • Simão M, Flory SL, Rudgers JA (2010) Experimental plant invasion reduces arthropod abundance and richness across multiple trophic levels. Oikos 119:1553–1562

    Article  Google Scholar 

  • Sutherland RA (1998) Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389:153–167

    Article  CAS  Google Scholar 

  • Symondson WOC, Glen DM, Erickson ML et al (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crop Investigations using monoclonal antibodies. Mol Ecol 9:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Tajovsky K (1992) Feeding biology of the millipede Glomeris hexasticha. Adv Myriapodol 10:305–311

    Google Scholar 

  • ter Braak CJ, Šmilauer P (2014) Topics in constrained and unconstrained ordination. Plant Ecol 1–14

  • Thomas R, Vaughan I, Lello J (2013) Data analysis with R statistical software. A guidebook for scientists. Eco-explore Press. p. 149

  • Torres PA, Abril AB, Bucher EH (2005) Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol Biochem 37:49–54

    Article  CAS  Google Scholar 

  • Tuttle NC, Beard KH, Pitt WC (2009) Invasive litter, not an invasive insectivore, determines invertebrate communities in Hawaiian forests. Biol Invasions 11:845–855

    Article  Google Scholar 

  • Vilà M, Espinar J, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Walsh C, Mac Nally R (2013) Package hier.part: hierarchical partitioning, version 1.0-4. R Foundation for Statistical Computing, Vienna, Austria

  • Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. CABI Publishing UNSW Press, New York

    Google Scholar 

  • Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wilkie L, Cassis G, Gray M (2007) The effects on terrestrial arthropod communities of invasion of a coastal heath ecosystem by the exotic weed bitou bush (Chrysanthemoides monilifera ssp. rotundata L.). Biol Invasions 9:477–498

    Article  Google Scholar 

  • Woodcock BA, Potts SG, Tscheulin T et al (2009) Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. J Appl Ecol 46:920–929

    Article  Google Scholar 

  • Woodward GB, Ebenman M, Emmerson J, Montoya JM, Olesen M, Valido A, Warren PH (2005) Body size in ecological networks. Trend Ecol Evol 20:402–409

    Article  Google Scholar 

  • Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S, Liebhold AM (2015) Comparison of insect invasions in North America, Japan and their Islands. Biol Inv 17:3049–3061

    Article  Google Scholar 

  • Zuefle ME, Brown WP, Tallamy DW (2008) Effects of non-native plants on the native insect community of Delaware. Biol Invasion 10:1159–1169

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to G. Webster, R. Mac Nally, T. Hefin Jones, H. Eyland, T. Belote and two anonymous reviewers for suggestions; T. Sauras, P. Fortuño and O. Canals for provision of analytical instrumentation for soil analysis; X. Font for plant taxonomy assistance; and J. Pujade, L. Mata, E. Planas, M. Blas and J. Mederos for assistance with Hymenoptera, Heteroptera, Araneae, Coleoptera and Diptera identification. AMV was funded by the Severo Ochoa Program for Centres of Excellence in R + D + I (Ref: SEV-2012-0262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Maceda-Veiga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maceda-Veiga, A., Basas, H., Lanzaco, G. et al. Impacts of the invader giant reed (Arundo donax) on riparian habitats and ground arthropod communities. Biol Invasions 18, 731–749 (2016). https://doi.org/10.1007/s10530-015-1044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1044-7

Keywords

Navigation