Advertisement

Biological Invasions

, Volume 17, Issue 11, pp 3101–3112 | Cite as

Differences in aggressive behaviour along the expanding range of an invasive crayfish: an important component of invasion dynamics

  • Sandra Hudina
  • Krešimir Žganec
  • Karlo Hock
Original Paper

Abstract

Aggressive interactions are essential for resource distribution and population dynamics of many animal species. Aggression can also help invasive species to wrestle the resources from other species and invade new habitat. To examine the effects of intra-species aggression on range expansion, we compared aggression levels of signal crayfish (Pacifastacus leniusculus) at the core and front of the invasion range in recently invaded regions of Croatia. More pronounced aggression was observed in core populations with high population densities, indicating potentially greater importance of highly aggressive behaviour in populations with higher competitive pressure. Despite better overall physical condition, individuals at the invasion front generally displayed lower levels of aggression and regularly lost interactions to individuals from the invasion core. Rather than providing a competitive advantage during range expansion, aggression may be more expressed in established populations, priming the individuals for future expansions while also driving the dispersal outward. The observed difference in aggression along the invasion pathway demonstrates that traits that help individuals to overcome challenges of their environment, such as competition against conspecifics, can drive the invasion dynamics of a successful invader in a new environment in terms of both niche competition and intrinsic expansion dynamics.

Keywords

Aggression Dispersal Invasive species Freshwater invasion Range expansion 

Notes

Acknowledgments

We thank Nina Jeran, Andreja Lucić and Krešimira Trgovčić for their help during fieldwork. This research was financially supported by Croatian Ministry of Science, Education and Sports (Project No. 119-1193080-1231). KH was supported by the Science and Industry Endowment Fund’s John Stocker Fellowship.

References

  1. Bell AA, Sih A (2007) Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett 10:828–834. doi: 10.1111/j.1461-0248.2007.01081.x CrossRefPubMedGoogle Scholar
  2. Bergman DA, Moore PA (2003) Field observations of intraspecific agonistic behavior of two crayfish species, Orconectes rusticus and Orconectes virilis, in different habitats. Biol Bull 205:26–35. doi: 10.2307/1543442 CrossRefPubMedGoogle Scholar
  3. Bovbjerg R (1956) Some factors affecting aggressive behavior in crayfish. Physiol Zool 29:127–136Google Scholar
  4. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225. doi: 10.1017/S1464793104006645 CrossRefPubMedGoogle Scholar
  5. Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13:1210–1220. doi: 10.1111/j.1461-0248.2010.01505.x CrossRefPubMedGoogle Scholar
  6. Chapple DG, Simmonds SM, Wong BBM (2012) Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol 27(1):57–64. doi: 10.1016/j.tree.2011.09.010 CrossRefPubMedGoogle Scholar
  7. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209. doi: 10.1111/j.1461-0248.2008.01267.x CrossRefPubMedGoogle Scholar
  8. Cote J, Clobert J, Brodin T, Fogarty S, Sih A (2010) Personality dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos Trans R Soc B 365:4065–4076. doi: 10.1098/rstb.2010.0176 CrossRefGoogle Scholar
  9. Davis K, Huber R (2007) Activity patterns, behavioural repertoires, and agonistic interactions of crayfish: a non-manipulative field study. Behaviour 144:229–247. doi: 10.1163/156853907779947300 CrossRefGoogle Scholar
  10. Dorn NJ, Urgelles R, Trexler JC (2005) Evaluating active and passive sampling methods to quantify crayfish density in a freshwater wetland. J N Am Benthol Soc 24(2):346–356. doi: 10.1899/04-037.1 CrossRefGoogle Scholar
  11. Duckworth RA (2008) Adaptive dispersal strategies and the dynamics of a range expansion. Am Nat 172:S4–S17. doi: 10.1086/588289 CrossRefPubMedGoogle Scholar
  12. Duckworth RA, Badyaev NA (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci USA 104(38):15017–15022. doi: 10.1073/pnas.0706174104 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Dugatkin LA, Ohlsen SR (1990) Contrasting asymmetries in value expectation and resource holding power—effects on attack behaviour and dominance in the pumpkinseed sunfish, Lepomis gibbosus. Anim Behav 39:802–804. doi: 10.1016/S0003-3472(05)80394-X CrossRefGoogle Scholar
  14. Enquist M, Leimar O (1983) Evolution of fighting behavior—decision rules and assessment of relative strength. J Theor Biol 102:387–410. doi: 10.1016/0022-5193(83)90376-4 CrossRefGoogle Scholar
  15. Enquist M, Leimar O (1987) Evolution of fighting behaviour: the effect of variation in resource value. J Theor Biol 127:187–205. doi: 10.1016/s0022-5193(87)80130-3 CrossRefGoogle Scholar
  16. Enquist M, Leimar O (1990) The evolution of fatal fighting. Anim Behav 39:1–9. doi: 10.1016/S0003-3472(05)80721-3 CrossRefGoogle Scholar
  17. Fero K, Simon JL, Jourdie V, Moore PA (2007) Consequences of social dominance on crayfish resource use. Behaviour 144:61–82. doi: 10.1163/156853907779947418 CrossRefGoogle Scholar
  18. Gajić-Čapka M, Zaninović K (2004) Climate conditions in the Sava. Drava and the Danube River Basins Croatian waters 12(49):297–312Google Scholar
  19. Gherardi F, Cioni A (2004) Agonism and interference competition in freshwater decapods. Behaviour 141:1297–1324. doi: 10.1163/1568539042729702 CrossRefGoogle Scholar
  20. Grafen A (1987) The logic of divisively asymmetric contests—respect of ownership and the desperado effect. Anim Behav 35:462–467CrossRefGoogle Scholar
  21. Graham M, Herberholz J (2009) Stability of dominance relationships in crayfish depends on social context. Anim Behav 77:195–199. doi: 10.1016/j.anbehav.2008.09.027 CrossRefGoogle Scholar
  22. Groen M, Sopinka NM, Marentette JR, Reddon AR, Brownscombe J, Fox MG et al (2012) Is there a role for aggression in round goby invasion fronts? Behaviour 149:685–703. doi: 10.1163/1568539X-00002998 CrossRefGoogle Scholar
  23. Gutowsky LFG, Fox MG (2011) Occupation, body size and sex ratio of round goby (Neogobius melanostomus) in established and newly invaded areas in an Ontario river. Hydrobiologia 671(1):27–37. doi: 10.1007/s10750-011-0701-9 CrossRefGoogle Scholar
  24. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311. doi: 10.1016/0022-5193(71)90189-5 CrossRefPubMedGoogle Scholar
  25. Harper WD (1982) Competitive foraging in mallards: ‘ideal free’ ducks. Anim Behav 30:575–584. doi: 10.1016/S0003-3472(82)80071-7 CrossRefGoogle Scholar
  26. Holway DA, Suarez AV (1999) Animal behavior: an essential component of invasion biology. Trends Ecol Evol 14(8):328–330. doi: 10.1016/S0169-5347(99)01636-5 CrossRefPubMedGoogle Scholar
  27. Huber R, Kravitz EA (1995) A quantitative analysis of agonistic behavior in juvenile american lobsters (Homarus americanus L). Brain Behav Evol 46:72–83. doi: 10.1159/000113260 CrossRefPubMedGoogle Scholar
  28. Hudina S, Hock K (2012) Behavioral determinants of agonistic success in invasive crayfish. Behav Proc 91:77–81. doi: 10.1016/j.beproc.2012.05.011 CrossRefGoogle Scholar
  29. Hudina S, Galic N, Roessink I, Hock K (2011) Competitive interactions between co-occurring invaders: identifying asymmetries between two invasive crayfish species. Biol Invasions 13(8):1791–1803. doi: 10.1007/s10530-010-9933-2 CrossRefGoogle Scholar
  30. Hudina S, Hock K, Žganec K, Lucić A (2012) Changes in population characteristics and structure of the signal crayfish at the edge of its invasive range in a European river. Ann Limnol Int J Lim 48:3–11. doi: 10.1051/limn/2011051 CrossRefGoogle Scholar
  31. Hudina S, Žganec K, Lucić A, Trgovčić K, Maguire I (2013) Recent invasion of the karstic river systems in Croatia through illegal introductions—the case study of the signal crayfish in the Korana River. Freshw Crayfish 19(1):21–27CrossRefGoogle Scholar
  32. Hudina S, Hock K, Žganec K (2014) The role of aggression in range expansion and biological invasions. Curr Zool 60(3):401–409Google Scholar
  33. Hughes M (2011) Deception with honest signals: signal residuals and signal function in snapping shrimp. Behav Ecol 11(6):614–623. doi: 10.1093/beheco/11.6.614 CrossRefGoogle Scholar
  34. Innocent TM, West SA, Sanderson JL, Hyrkkanen N, Reece SE (2012) Lethal combat over limited resources: testing the importance of competitors and kin. Behav Ecol 22(5):923–931. doi: 10.1093/beheco/arq209 CrossRefGoogle Scholar
  35. Just W, Morris MR (2003) The Napoleon complex: why smaller males pick fights. Evol Ecol 17:509–522. doi: 10.1023/B:EVEC.0000005629.54152.83 CrossRefGoogle Scholar
  36. Kolar C, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16(4):199–204. doi: 10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  37. Lodge DM, Deines A, Gherardi F, Yeo DCJ, Arcella T, Baldridge AK et al (2012) Global introductions of crayfishes: evaluating impact of species invasions on ecosystem services. Annu Rev Ecol Evol Syst 43:449–472. doi: 10.1146/annurev-ecolsys-111511-103919 CrossRefGoogle Scholar
  38. Lopez D, Jungman A, Rehage J (2012) Nonnative African jewelfish are more fit but not bolder at the invasion front: a trait comparison across an Everglades range expansion. Biol Invasions 14(10):2159–2174. doi: 10.1007/s10530-012-0221-1 CrossRefGoogle Scholar
  39. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Moore PA (2007) Agonistic behavior in freshwater crayfish: The influence of intrinsic and extrinsic factors on aggressive behavior and dominance. In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: Crustacea as models organisms. Oxford University Press, Oxford, pp 90–114CrossRefGoogle Scholar
  41. Morrell LJ, Lindström J, Ruxton GD (2005) Why are small males aggressive?. Proc R Soc B 272:1235–1241. doi: 10.1098/rspb.2005.3085 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Nakata K, Goshima S (2003) Competition for shelter of preferred sizes between the native crayfish species Cambaroides japonicus and he alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and body size. J Crust Biol 23:897–907. doi: 10.1651/C-2411 CrossRefGoogle Scholar
  43. Ogle DH, Kret L (2008) Experimental evidence that captured Rusty crayfish (Orconectes rusticus) exclude uncaptured rusty crayfish from entering traps. J Freshw Ecol 23:123–129. doi: 10.1080/02705060.2008.9664563 CrossRefGoogle Scholar
  44. Pavey CR, Fielder DR (1996) The influence of size differential on agonistic behaviour in the freshwater crayfish, Cherax cuspidatus (Decapoda: Parastacidae). J Zool 238(3):445–457. doi: 10.1111/j.1469-7998.1996.tb05405.x
  45. Peig J, Green AJ (2010) The paradigm of body condition: critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332. doi: 10.1111/j.1365-2435.2010.01751.x CrossRefGoogle Scholar
  46. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 43:803. doi: 10.1038/439803a CrossRefGoogle Scholar
  47. Phillips BL, Brown GP, Shine R (2010) Life-history evolution in range-shifting populations. Ecology 91:1617–1627. doi: 10.1890/09-0910.1 CrossRefPubMedGoogle Scholar
  48. Pintor LM, Sih A, Bauer M (2008) Differences in aggression, activity and boldness between native introduced populations of an invasive crayfish. Oikos 117(11):1629–1636. doi: 10.1111/j.1600-0706.2008.16578.x CrossRefGoogle Scholar
  49. Pintor L, Sih A, Kerby J (2009) Behavioral correlations provide a mechanism for explaining high invasive densities and increased impact on native prey. Ecology 90:581–587. doi: 10.1890/08-0552.1 CrossRefPubMedGoogle Scholar
  50. Price JE, Welch SM (2009) Semi-quantitative methods for crayfish sampling: sex, size, and habitat bias. J Crust Biol 29(2):208–216. doi: 10.1651/08-3018R.1 CrossRefGoogle Scholar
  51. Rebrina F, Skejo J, Lucić A, Hudina S (2015) Trait variability of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region reflects potential benefits and trade-offs during dispersal. Aquat Invasions 10(1):41–50. doi: 10.3391/ai.2015.10.1.04 CrossRefGoogle Scholar
  52. Schradin C, Lamprecht J (2002) Causes of female emigration in group-living cichlid fish Neolamprologus multifasciatus. Ethology 108(3):237–248. doi: 10.1046/j.1439-0310.2002.00775.x CrossRefGoogle Scholar
  53. Schroeder L, Huber R (2001) Fighting strategies in small and large individuals of the crayfish, Orconectes rusticus. Behaviour 128:1437–1449. doi: 10.1163/156853901317367681 CrossRefGoogle Scholar
  54. Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci USA 108(14):5708–5711. doi: 10.1073/pnas.1018989108 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological implications of behavioural syndromes. Ecol Lett 15(3):278–289. doi: 10.1111/j.1461-0248.2011.01731.x CrossRefPubMedGoogle Scholar
  56. Söderbäck B (1991) Interspecific dominance relationship and aggressive interactions in the freshwater crayfishes Astacus astacus (L.) and Pacifastacus leniusculus (Dana). Can J Zool 69:1321–1325. doi: 10.1139/z91-186 CrossRefGoogle Scholar
  57. Souty-Grosset C, Holdich D, Noel P, Reynolds JD, Haffner P (2006) Atlas of crayfish in Europe. Museum National d’Histoire Naturelles, ParisGoogle Scholar
  58. Stocker AM, Huber R (2001) Fighting strategies in crayfish Orconectes rusticus (Decapoda, Cambaridae) differ with hunger state and the presence of food cues. Ethology 107:727–736. doi: 10.1046/j.1439-0310.2001.00705.x CrossRefGoogle Scholar
  59. Streissl F, Hödl W (2002) Growth, morphometrics, size at maturity, sexual dimorphism and condition index of Austropotamobius torrentium Schrank. Hydrobiologia 477:201–208CrossRefGoogle Scholar
  60. Tierney A, Godleski M, Massanari J (2001) Comparative analysis of agonistic behavior in four crayfish species. J Crust Biol 20:54–66. doi: 10.1651/0278-0372(2000)020[0054:CAOABI]2.0.CO;2
  61. Twardochleb LA, Olden JS, Larson ER (2013) A global meta-analysis of the ecological impacts of nonative crayfish. Freshw Sci 32(4):1367–1382. doi: 10.1899/12-203.1
  62. Usio N, Konishi M, Nakano S (2001) Species displacement between an introduced and a ‘vulnerable’ crayfish: the role of aggressive interactions and shelter competition. Biol Invasions 3:179–185. doi: 10.1023/A:1014573915464 CrossRefGoogle Scholar
  63. Weis JS (2010) The role of behavior in the success of invasive crustaceans. Mar Freshw Behav Physiol 43:83–98. doi: 10.1080/10236244.2010.480838 CrossRefGoogle Scholar
  64. Zar J (1999) Biostatistical analyses. Prentice Hall, LondonGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Department of Teachers’ Education in GospićUniversity of ZadarGospićCroatia
  3. 3.School of Biological SciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations