Biological Invasions

, Volume 17, Issue 8, pp 2475–2490 | Cite as

Population genetics of invasive Citrullus lanatus, Citrullus colocynthis and Cucumis myriocarpus (Cucurbitaceae) in Australia: inferences based on chloroplast and nuclear gene sequencing

  • Razia S. Shaik
  • David Gopurenko
  • Nigel A. R. Urwin
  • Geoffrey E. Burrows
  • Brendan J. Lepschi
  • Leslie A. Weston
Original Paper


To understand the invasion history of the invasive weeds Citrullus lanatus (camel melon), Citrullus colocynthis (colocynth) and Cucumis myriocarpus (prickly paddy melon) in Australia, we studied a collection of geographically diverse samples from Africa (native range), Asia, North and South America, Europe and Australia (introduced ranges). We sequenced portions of two gene regions, the nuclear G3pdh gene and the chloroplast ycf6psbM intergenic spacer region, to identify the diversity and relationships of alleles/haplotypes present within and among sampled populations of each species. We found that C. lanatus and C. myriocarpus populations in Australia contain negligible levels of diversity in both genes, indicative of single, genetically impoverished founder events by both species and potentially derived from single source populations in both instances. Together, historical and sequence information point to the north-western region of the Indian subcontinent as the likely source of Australian C. lanatus. Surprisingly, Australian C. myriocarpus plants share the same genetic profile as that observed in all other invasive populations of this species, but differ from that observed in native African plants. This indicates a shared origin of invasive C. myriocarpus populations and potentially a stepping-stone pathway of founder events across the globe, the origins of which are yet unidentified. In contrast, moderate levels of genetic diversity are present among Australian C. colocynthis that can be geographically sorted mainly into eastern and western regions of the continent. This suggests two separate introductions of the species into Australia, from two different source populations, most likely originating from northern Africa and/or southern Europe/Turkey. The evidence of impoverished genetic diversity in Australian populations of C. lanatus and C. myriocarpus indicates they are likely to exhibit similar responses to control measures. In contrast, development of effective chemical or bio-controls for C. colocynthis in Australia may present a greater challenge.


Biological invasion G3pdh ycf6psbGenetic diversity Introduction Phylogenetic analysis 



We thank Tiffany Fields (United States Department of Agriculture, Georgia) and Kathleen Reitsema (United States Department of Agriculture, Iowa) for providing seed material used in this study. Herbarium material was kindly provided by Fred Hrusa (Herbarium, California Department of Food and Agriculture), Susanne Renner (Herbarium, Botanische Staatssammlung München), Jan Wieringa (Nationaal Herbarium Nederland,Wageningen University branch, Wageningen University) and the curators and staff of the Natural History Museum Herbarium, London; National Herbarium of Victoria, Northern Territory Herbarium, State Herbarium of South Australia, Tasmanian Herbarium and the Western Australian Herbarium. We also thank numerous Australian colleagues who personally collected plant material used in this study. Prof. Fenny Dane, University of Auburn, kindly provided information on PCR protocols. We thank Mr Craig Poynter at Spatial Data Analysis Network, CSU, Wagga Wagga for help with sample distribution map preparation. We acknowledge the financial support provided by the Graham Centre for Agricultural Innovation through a New Research Initiative Grant and for a research fellowship for RSS.

Supplementary material

10530_2015_891_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 80 kb)
10530_2015_891_MOESM2_ESM.jpg (1.2 mb)
Supplementary material 2 (JPEG 1187 kb)


  1. Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Barker HM (1964) Camels and the outback. Sir Isaac Pitman & Sons Ltd., MelbourneGoogle Scholar
  3. Burdon JJ, Marshall DR (1981) Biological control and the reproductive mode of weeds. J Appl Ecol 18:649–658CrossRefGoogle Scholar
  4. Burrows GE, Shaik RS (2014) Comparative developmental anatomy of the taproot of the cucurbitaceous vines Citrullus colocynthis (perennial), Citrullus lanatus (annual) and Cucumis myriocarpus (annual). Aust J Bot 62:537–545. doi: 10.1071/BT14124 CrossRefGoogle Scholar
  5. Clark L, Evans K, Jasieniuk M (2013) Origins and distribution of invasive Rubus fruticosus L. agg. (Rosaceae) clones in the Western United States. Biol Invasions 15:1331–1342. doi: 10.1007/s10530-012-0369-8 CrossRefGoogle Scholar
  6. Clement M, Posada DCKA, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  7. Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265. doi: 10.1007/s10722-006-9107-3 CrossRefGoogle Scholar
  8. Dane F, Liu J, Zhang C (2007) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Evol 54:327–336. doi: 10.1007/s10722-005-4897-2 CrossRefGoogle Scholar
  9. Dlugosch KM, Parker IM (2007) Molecular and quantitative trait variation across the native range of the invasive species Hypericum canariense: evidence for ancient patterns of colonization via pre-adaptation? Mol Ecol 16:4269–4283. doi: 10.1111/j.1365-294X.2007.03508.x PubMedCrossRefGoogle Scholar
  10. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050PubMedCentralPubMedCrossRefGoogle Scholar
  11. Elorza MS, Bernardo FG, Oliván AS, Iglesias LPG (2011) Invasiveness of alien vascular plants in six arid zones of Europe, Africa and America. Lazaroa 31:109–126CrossRefGoogle Scholar
  12. Eriksen RL, Desronvil T, Hierro JL, Kesseli R (2012) Morphological differentiation in a common garden experiment among native and non-native specimens of the invasive weed yellow starthistle (Centaurea solstitialis). Biol Invasions 14:1459–1467. doi: 10.1007/s10530-012-0172-6 CrossRefGoogle Scholar
  13. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x PubMedCrossRefGoogle Scholar
  14. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  15. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitch-hiking, and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  16. Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Trávníček P (2011) Invasiveness in introduced Australian acacias: the role of species traits and genome size. Divers Distrib 17:884–897. doi: 10.1111/j.1472-4642.2011.00805.x CrossRefGoogle Scholar
  17. GBIF (2011a) Species: Citrullus colocynthis (L.) Schrad. Accessed 20 Feb 2014
  18. GBIF (2011b) Species: Citrullus lanatus (Thunb.) Matsum. & Nakai. Accessed 25 Feb 2014
  19. GBIF (2011c) Species: Cucumis myriocarpus E. Mey. ex Naudin Accessed 25 Feb 2014
  20. Geng Y-P et al (2007) Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol Invasions 9:245–256. doi: 10.1007/s10530-006-9029-1 CrossRefGoogle Scholar
  21. Goolsby JA, De Barro PJ, Makinson JR, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297. doi: 10.1111/j.1365-294X.2005.02788.x PubMedCrossRefGoogle Scholar
  22. Gopurenko D, Fletcher MJ, Löcker H, Mitchell A (2013) Morphological and DNA barcode species identifications of leafhoppers, planthoppers and treehoppers (Hemiptera: Auchenorrhyncha) at Barrow island. Records of the western Australian museum, supplement 83: the terrestrial invertebrate fauna of Barrow island, western Australia. Western Australian Museum Publications, Perth, pp 253–285Google Scholar
  23. Hao ZP, Wang Q, Christie P, Li XL (2007) Allelopathic potential of watermelon tissues and root exudates. Sci Hortic (Amst) 112:315–320. doi: 10.1016/j.scienta.2006.12.030 CrossRefGoogle Scholar
  24. Harris CJ, Murray BR, Hose GC, Hamilton MA (2007) Introduction history and invasion success in exotic vines introduced to Australia. Divers Distrib 13:467–475. doi: 10.1111/j.1472-4642.2007.00375.x CrossRefGoogle Scholar
  25. Harrison HF Jr, Wechter PW, Kousik CS (2012) Inhibition of bacterial, fungal, and plant growth by testae extracts of Citrullus genotypes. Hort Sci 47:448–451Google Scholar
  26. Heinze B (2007) A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3(4). doi: 10.1186/1746-4811-3-4
  27. Hickman JC (1993) The Jepson manual: higher plants of California. University of California Press, BerkeleyGoogle Scholar
  28. Hinz HL, Schwarzländer M, McKenney JL, Cripps MG, Harmon B, Price WJ (2012) Biogeographical comparison of the invasive Lepidium draba in its native, expanded and introduced ranges. Biol Invasions 14:1999–2016. doi: 10.1007/s10530-012-0207-z CrossRefGoogle Scholar
  29. Hornoy B, Atlan A, Roussel V, Buckley YM, Tarayre M (2013) Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus. Heredity 111:355–363. doi: 10.1038/hdy.2013.53 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Huffaker CB, Kennett CE (1959) A ten-year study of vegetational changes associated with biological control of klamath weed. J Range Manag 12:69–82CrossRefGoogle Scholar
  31. Jakobs G, Weber E, Edwards PJ (2004) Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers Distrib 10:11–19. doi: 10.1111/j.1472-4642.2004.00052.x CrossRefGoogle Scholar
  32. Kelager A, Pedersen J, Bruun H (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141. doi: 10.1007/s10530-012-0356-0 CrossRefGoogle Scholar
  33. Kouonon LC, Jacquemart A-L, Bi AIZ, Bertin P, Baudoin J-P, Dje Y (2009) Reproductive biology of the andromonoecious Cucumis melo subsp. agrestis (Cucurbitaceae). Ann Bot 104:1129–1139PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kumar R, Dia M, Wehner TC (2013) Implications of mating behavior in watermelon breeding. Hort Sci 48:960–964Google Scholar
  35. Le Roux JJ, Wieczorek AM, Meyer JY (2008) Genetic diversity and structure of the invasive tree Miconia calvescens in Pacific islands. Divers Distrib 14:935–948. doi: 10.1111/j.1472-4642.2008.00504.x CrossRefGoogle Scholar
  36. Le Roux JJ, Brown GK, Byrne M, Ndlovu J, Richardson DM, Thompson GD, Wilson JRU (2011) Phylogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Divers Distrib 17:861–871. doi: 10.1111/j.1472-4642.2011.00784.x CrossRefGoogle Scholar
  37. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 PubMedCrossRefGoogle Scholar
  38. Lynch M, Conery J, Burger R (1995) Mutational meltdowns in sexual populations. Evolution 49:1067–1080. doi: 10.2307/2410432 CrossRefGoogle Scholar
  39. Martin TG, Campbell S, Grounds S (2006) Weeds of Australian rangelands. Rangel J 28:3–26. doi: 10.1071/RJ06017 CrossRefGoogle Scholar
  40. Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, McKay JK (2006) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions 8:1355–1366CrossRefGoogle Scholar
  41. Meyerson L, Cronin J (2013) Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biol Invasions 15:2605–2608. doi: 10.1007/s10530-013-0491-2 CrossRefGoogle Scholar
  42. Michael DR, Lindenmayer DB, Cunningham RB (2010a) Managing rock outcrops to improve biodiversity conservation in Australian agricultural landscapes. Ecol Manag Restor 11:43–50. doi: 10.1111/j.1442-8903.2010.00512.x CrossRefGoogle Scholar
  43. Michael PJ, Borger CP, MacLeod WJ, Payne PL (2010b) Occurrence of summer fallow weeds within the grain belt region of southwestern Australia. Weed Technol 24:562–568. doi: 10.1614/wt-d-09-00060.1 CrossRefGoogle Scholar
  44. Miller JM, Schlising RL (2013) Citrullus, in Jepson flora project (eds.) Jepson e flora. Accessed 06 June 2014
  45. Ndlovu J, Richardson DM, Wilson JRU, O’Leary M, Le Roux JJ (2013) Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure. Ann Bot 111:895–904. doi: 10.1093/aob/mct057 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  47. Novak SJ, Mack RN (2001) Tracing plant introduction and spread: genetic evidence from Bromus tectorum (cheatgrass). Bioscience 51:114–122CrossRefGoogle Scholar
  48. Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia, 2nd edn. CSIRO Publishing, CollingwoodGoogle Scholar
  49. Prentis PJ, Pavasovic A (2013) Understanding the genetic basis of invasiveness. Mol Ecol 22:2366–2368. doi: 10.1111/mec.12277 PubMedCrossRefGoogle Scholar
  50. Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294. doi: 10.1016/j.tplants.2008.03.004 PubMedCrossRefGoogle Scholar
  51. Prentis PJ, Sigg DP, Raghu S, Dhileepan K, Pavasovic A, Lowe AJ (2009) Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Divers Distrib 15:822–830. doi: 10.1111/j.1472-4642.2009.00592.x CrossRefGoogle Scholar
  52. Pyšek P et al (2010) Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecol Monogr 81:277–293. doi: 10.1890/10-0630.1 Google Scholar
  53. Ramirez AHM, Jhala AJ, Singh M (2014) Factors affecting germination of citronmelon (Citrullus lanatus var. citroides). Weed Sci 62:45–50. doi: 10.1614/WS-D-13-00041.1 CrossRefGoogle Scholar
  54. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedCrossRefGoogle Scholar
  55. Rautenberg A, Hathaway L, Oxelman B, Prentice HC (2010) Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 57:978–991. doi: 10.1016/j.ympev.2010.08.003 PubMedCrossRefGoogle Scholar
  56. Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389. doi: 10.1146/annurev.ecolsys.28.1.359 CrossRefGoogle Scholar
  57. Roe AD, Sperling FAH (2007) Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Mol Ecol 16:3617–3633. doi: 10.1111/j.1365-294X.2007.03412.x PubMedCrossRefGoogle Scholar
  58. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  59. Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow salt cedar to invade cold climates in north America. Ecol Appl 12:1652–1660.CrossRefGoogle Scholar
  60. Shaik RS, Weston LA, Burrows G, Gopurenko D (2011) A comparative phenological and genetic diversity analysis of two invasive weeds, camel melon (Citrullus lanatus (Thunb.) Matsum. and Nakai var. lanatus) and prickly paddy melon (Cucumis myriocarpus L.), in inland Australia. In: Adkins S (ed) 23rd Asian-Pacific Weed Science Society Conference, The Sebel Cairns, Cairns, Queensland, Australia, 26–29 September 2011, pp 510–518Google Scholar
  61. Shaik RS, Gopurenko D, Burrows GE, Urwin NAR, Lepschi BJ, Hildebrand SM, Weston LA (2012) Identification of the invasive weeds, camel melon, prickly paddy melon and colocynth in Australia—a morphological and molecular approach. In: Eldershaw V (ed) 18th Australasian weeds conference, The Sebel and Citigate Albert Park, Melbourne, Victoria, Australia, 8–11 October 2012. Developing solutions to evolving weed problems. Weed Science Society of Victoria Inc., Frankston, Australia, pp 73–77Google Scholar
  62. Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102. doi: 10.1146/annurev.ecolsys.110308.120304 CrossRefGoogle Scholar
  63. Singh A (1978) Cytogenetics of semi-arid plants: 3. A natural interspecific hybrid of Cucurbitaceae (Citrullus colocynthis Schrad x C. vulgaris Schrad). Cytologia 43:569–574CrossRefGoogle Scholar
  64. Stricker BK, Stiling P (2013) Seedlings of the introduced invasive shrub Eugenia uniflora (Myrtaceae) outperform those of its native and introduced non-invasive congeners in Florida. Biol Invasions 15:1973–1987. doi: 10.1007/s10530-013-0425-z CrossRefGoogle Scholar
  65. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  66. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Vergeer P, Kunin WE (2013) Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. New Phytol 197:989–1001. doi: 10.1111/nph.12060 PubMedCrossRefGoogle Scholar
  68. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968. doi: 10.1111/j.1471-8286.2007.01821.x CrossRefGoogle Scholar
  69. Ward SM, Reid SD, Harrington J, Sutton J, Beck KG (2008) Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the western United States. Weed Sci 56:394–399. doi: 10.1614/ws-07-157.1 CrossRefGoogle Scholar
  70. Williams PA, Randall R (2002) How weedy are plants recently naturalised in New Zealand? NZ Plant Prot 55:432Google Scholar
  71. Yu JQ, Shou SY, Qian YR, Zhu ZJ, Hu WH (2000) Autotoxic potential of cucurbit crops. Plant Soil 223:149–153. doi: 10.1023/A:1004829512147 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Razia S. Shaik
    • 1
    • 5
  • David Gopurenko
    • 2
    • 5
  • Nigel A. R. Urwin
    • 3
    • 5
  • Geoffrey E. Burrows
    • 1
    • 5
  • Brendan J. Lepschi
    • 4
  • Leslie A. Weston
    • 5
  1. 1.School of Agricultural and Wine SciencesCharles Sturt UniversityWagga WaggaAustralia
  2. 2.NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaAustralia
  3. 3.School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaAustralia
  4. 4.Australian National HerbariumCentre for Australian National Biodiversity ResearchCanberraAustralia
  5. 5.Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University)Wagga WaggaAustralia

Personalised recommendations