Biological Invasions

, Volume 16, Issue 10, pp 2115–2125 | Cite as

Genetic diversity and population structure of sickleweed (Falcaria vulgaris; Apiaceae) in the upper Midwest USA

  • Sarbottam Piya
  • Madhav P. Nepal
  • Jack L. Butler
  • Gary E. Larson
  • Achal Neupane
Original Paper


Sickleweed (Falcaria vulgaris), an introduced species native to Europe and Asia, grows as an aggressive weed in some areas of the upper Midwest in the United States. We are reporting genetic diversity and population structure of sickleweed populations using microsatellite markers and nuclear and chloroplast DNA sequences. Populations showed high genetic differentiation but did not show significant geographic structure, suggesting random establishment of different genotypes at different sites was likely due to human mediated multiple introductions. Three genetic clusters revealed by microsatellite data and presence of six chlorotypes supported our hypothesis of multiple introductions. Chloroplast DNA sequence data revealed six chlorotypes nested into two main lineages suggesting at least two introductions of sickleweed in the upper Midwest. Some individuals exhibited more than two alleles at several microsatellite loci suggesting occurrence of polyploidy, which could be a post-introduction development to mitigate the inbreeding effects. High genetic variation in the introduced range attributable to multiple introductions and polyploidy may be inducing the evolution of invasiveness in sickleweed. Results of this study provide valuable insights into the evolution of sickleweed and baseline data for designing proper management practices for controlling sickleweed in the United States.


Chlorotypes Falcaria vulgaris Microsatellite Polyploidy trnL-trnF trnQ-rps16 



This study was supported by faculty startup fund to MPN from SDSU Department of Biology and Microbiology and in part by the US Forest Service, Rocky Mountain Research Station, Rapid City, SD. Nepal lab alumni Sajag Adhikary, Spencer Schreier and Kenton MacArthur provided lab work assistance and useful discussion on the manuscript. We thank Carol Erickson, Teresa Y. Harris and Ryan Frickel for field assistance.

Supplementary material

10530_2014_651_MOESM1_ESM.pdf (195 kb)
Supplementary material 1 (PDF 194 kb)


  1. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  2. Alyokhin A (2011) Non-natives: put biodiversity at risk. Nature 475:36PubMedCrossRefGoogle Scholar
  3. Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321PubMedCentralPubMedGoogle Scholar
  4. Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30PubMedCentralPubMedCrossRefGoogle Scholar
  5. Blackburn TM, Pysek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339PubMedCrossRefGoogle Scholar
  6. Butler JL, Wacker SD (2013) Sickleweed on the Fort Pierre National Grassland: an emerging threat. Prarie Nat 45:28–38Google Scholar
  7. Clapham AR, Tutin TG, Moore DM (1987) Flora of the British Isles. Cambridge University Press, Cambridge Cambridgeshire, New YorkGoogle Scholar
  8. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846PubMedCrossRefGoogle Scholar
  9. Coyer JA, Hoarau G, Pearson GA, Serrao EA, Stam WT, Olsen JL (2006) Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. Biol Lett 2:405–408PubMedCentralPubMedCrossRefGoogle Scholar
  10. DAISIE (2008) Falcaria vulgaris. European Invasive Alien Species Gateway. Accessed 4 April 2012
  11. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  14. Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385PubMedCrossRefGoogle Scholar
  15. Gaskin JF, Zhang DY, Bon MC (2005) Invasion of Lepidium draba (Brassicaceae) in the western United States: distributions and origins of chloroplast DNA haplotypes. Mol Ecol 14:2331–2341PubMedCrossRefGoogle Scholar
  16. Gaudeul M, Giraud T, Kiss L, Shykoff JA (2011) Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. Plos One 6:e17658PubMedCentralPubMedCrossRefGoogle Scholar
  17. Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285PubMedCrossRefGoogle Scholar
  18. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  19. Gress EM (1923) Falcaria rivini, a plant new to the United States. Rhodora 25:13–14Google Scholar
  20. Kelager A, Pedersen JS, Bruun HH (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141CrossRefGoogle Scholar
  21. Knuth P (1908) Handbook of flower pollination. Clarendon, OxfordGoogle Scholar
  22. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  23. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedCrossRefGoogle Scholar
  24. Korman BL (2011) Biology and ecology of sickleweed (Falcaria vulgaris) in the Fort Pierre National Grassland of South Dakota. Biology and microbiology. South Dakota State University, Brookings, South Dakota, p 78Google Scholar
  25. Kowarik I (2005) Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishers, AmsterdamGoogle Scholar
  26. Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967PubMedCrossRefGoogle Scholar
  27. Larina SY (2008) Falcaria vulgaris Bernh. Interactive agricultural ecological atlas of Russia and neighboring countries. In: Afonin AN, Greene SL, Dzyubenko NI and Frolov AN (eds) Economic plants and their diseases, pests and weeds. Accessed 15 March 2012
  28. Larkin MA, Blackshields G, Brown NP et al (2007) ClustalW and clustalX version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  29. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  31. Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of allee effects. Ecology 85:1651–1660CrossRefGoogle Scholar
  32. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  33. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228PubMedCrossRefGoogle Scholar
  34. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  35. Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561–572CrossRefGoogle Scholar
  36. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nater A, Arora N, Greminger MP et al (2013) Marked population structure and recent migration in the critically endangered Sumatran Orangutan (Pongo abelii). J Hered 104:2–13PubMedCrossRefGoogle Scholar
  38. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321-3323Google Scholar
  39. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233PubMedCrossRefGoogle Scholar
  40. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  41. Novak SJ, Mack RN (2001) Tracing plant introduction and spread: genetic evidence from Bromus tectorum (Cheatgrass). Bioscience 51:114–122CrossRefGoogle Scholar
  42. Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Bot J Linn Soc 151:395–403CrossRefGoogle Scholar
  43. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  44. Piya S, Nepal MN (2013) Characterization of nuclear and chloroplast microsatellite markers for Falcaria vulgaris (Apiaceae). Am J Plant Sci 4:590–595CrossRefGoogle Scholar
  45. Piya S, Neupane A, Larson GE, Butler J, Nepal MN (2012) Inferring introduction history and spread of Falcaria vulgaris Bernh. (Apiaceae) in the United States based on herbarium records. Proc SD Acad Sci 91:113–119Google Scholar
  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  47. Provan J, Murphy S, Maggs CA (2005) Tracking the invasive history of the green alga Codium fragile ssp tomentosoides. Mol Ecol 14:189–194PubMedCrossRefGoogle Scholar
  48. Pysek P, Prach K (1993) Plant invasion and the role of riparian habitats: a comparison of four species alien to central Europe. J Biogeogr 20:413–420CrossRefGoogle Scholar
  49. Pysek P, Richardson DM, Pergl J, Jarosik V, Sixtova Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244PubMedCrossRefGoogle Scholar
  50. Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  51. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  52. Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity- Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  53. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  54. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  55. Simberloff D, Alexander J, Allendorf F et al (2011) Non-natives: 141 scientists object. Nature 475:36PubMedCrossRefGoogle Scholar
  56. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  57. Swafford DL (2003) PAUP4. Phylogenetic analysis using parsimony. Sinauer Associates, SunderlandGoogle Scholar
  58. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  59. Tang SQ, Wei F, Zeng LY et al (2009) Multiple introductions are responsible for the disjunct distributions of invasive Parthenium hysterophorus in China: evidence from nuclear and chloroplast DNA. Weed Res 49:373–380CrossRefGoogle Scholar
  60. Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908CrossRefGoogle Scholar
  61. USDA, NRCS (2011) The plants database. National Plant Data Center, Baton Rouge. Accessed 16 April 2011
  62. Valliant MT, Mack RN, Novak SJ (2007) Introduction history and population genetics of the invasive grass Bromus tectorum (Poaceae) in Canada. Am J Bot 94:1156–1169PubMedCrossRefGoogle Scholar
  63. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  64. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, New YorkGoogle Scholar
  65. Wilson JRU, Gairifo C, Gibson MR et al (2011) Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Divers Distrib 17:1030–1046CrossRefGoogle Scholar
  66. Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157Google Scholar
  67. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sarbottam Piya
    • 1
  • Madhav P. Nepal
    • 1
  • Jack L. Butler
    • 2
  • Gary E. Larson
    • 3
  • Achal Neupane
    • 1
  1. 1.Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsUSA
  2. 2.Rocky Mountain Research StationUSDA Forest ServiceRapid CityUSA
  3. 3.Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsUSA

Personalised recommendations