Skip to main content
Log in

Genetic diversity and population structure of sickleweed (Falcaria vulgaris; Apiaceae) in the upper Midwest USA

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Sickleweed (Falcaria vulgaris), an introduced species native to Europe and Asia, grows as an aggressive weed in some areas of the upper Midwest in the United States. We are reporting genetic diversity and population structure of sickleweed populations using microsatellite markers and nuclear and chloroplast DNA sequences. Populations showed high genetic differentiation but did not show significant geographic structure, suggesting random establishment of different genotypes at different sites was likely due to human mediated multiple introductions. Three genetic clusters revealed by microsatellite data and presence of six chlorotypes supported our hypothesis of multiple introductions. Chloroplast DNA sequence data revealed six chlorotypes nested into two main lineages suggesting at least two introductions of sickleweed in the upper Midwest. Some individuals exhibited more than two alleles at several microsatellite loci suggesting occurrence of polyploidy, which could be a post-introduction development to mitigate the inbreeding effects. High genetic variation in the introduced range attributable to multiple introductions and polyploidy may be inducing the evolution of invasiveness in sickleweed. Results of this study provide valuable insights into the evolution of sickleweed and baseline data for designing proper management practices for controlling sickleweed in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Alyokhin A (2011) Non-natives: put biodiversity at risk. Nature 475:36

    Article  CAS  PubMed  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackburn TM, Pysek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Butler JL, Wacker SD (2013) Sickleweed on the Fort Pierre National Grassland: an emerging threat. Prarie Nat 45:28–38

    Google Scholar 

  • Clapham AR, Tutin TG, Moore DM (1987) Flora of the British Isles. Cambridge University Press, Cambridge Cambridgeshire, New York

    Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Coyer JA, Hoarau G, Pearson GA, Serrao EA, Stam WT, Olsen JL (2006) Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. Biol Lett 2:405–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DAISIE (2008) Falcaria vulgaris. European Invasive Alien Species Gateway. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=21090. Accessed 4 April 2012

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385

    Article  CAS  PubMed  Google Scholar 

  • Gaskin JF, Zhang DY, Bon MC (2005) Invasion of Lepidium draba (Brassicaceae) in the western United States: distributions and origins of chloroplast DNA haplotypes. Mol Ecol 14:2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Gaudeul M, Giraud T, Kiss L, Shykoff JA (2011) Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. Plos One 6:e17658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Gress EM (1923) Falcaria rivini, a plant new to the United States. Rhodora 25:13–14

    Google Scholar 

  • Kelager A, Pedersen JS, Bruun HH (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141

    Article  Google Scholar 

  • Knuth P (1908) Handbook of flower pollination. Clarendon, Oxford

    Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Korman BL (2011) Biology and ecology of sickleweed (Falcaria vulgaris) in the Fort Pierre National Grassland of South Dakota. Biology and microbiology. South Dakota State University, Brookings, South Dakota, p 78

    Google Scholar 

  • Kowarik I (2005) Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishers, Amsterdam

    Google Scholar 

  • Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967

    Article  PubMed  Google Scholar 

  • Larina SY (2008) Falcaria vulgaris Bernh. Interactive agricultural ecological atlas of Russia and neighboring countries. In: Afonin AN, Greene SL, Dzyubenko NI and Frolov AN (eds) Economic plants and their diseases, pests and weeds. http://www.agroatlas.ru/en/content/weeds/Falcaria_vulgaris/. Accessed 15 March 2012

  • Larkin MA, Blackshields G, Brown NP et al (2007) ClustalW and clustalX version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of allee effects. Ecology 85:1651–1660

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561–572

    Article  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nater A, Arora N, Greminger MP et al (2013) Marked population structure and recent migration in the critically endangered Sumatran Orangutan (Pongo abelii). J Hered 104:2–13

    Article  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321-3323

    Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • NISC (2011) Invasive plants of Nebraska. http://snr5.unl.edu/invasives/pdfs/Invasive%20Plant%20Lists/NE%20Invasive%20Plants%20List%20Only%204-14-11.pdf. Accessed 12 Jan 2012

  • Novak SJ, Mack RN (2001) Tracing plant introduction and spread: genetic evidence from Bromus tectorum (Cheatgrass). Bioscience 51:114–122

    Article  Google Scholar 

  • Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Bot J Linn Soc 151:395–403

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Piya S, Nepal MN (2013) Characterization of nuclear and chloroplast microsatellite markers for Falcaria vulgaris (Apiaceae). Am J Plant Sci 4:590–595

    Article  Google Scholar 

  • Piya S, Neupane A, Larson GE, Butler J, Nepal MN (2012) Inferring introduction history and spread of Falcaria vulgaris Bernh. (Apiaceae) in the United States based on herbarium records. Proc SD Acad Sci 91:113–119

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provan J, Murphy S, Maggs CA (2005) Tracking the invasive history of the green alga Codium fragile ssp tomentosoides. Mol Ecol 14:189–194

    Article  PubMed  Google Scholar 

  • Pysek P, Prach K (1993) Plant invasion and the role of riparian habitats: a comparison of four species alien to central Europe. J Biogeogr 20:413–420

    Article  Google Scholar 

  • Pysek P, Richardson DM, Pergl J, Jarosik V, Sixtova Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity- Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Simberloff D, Alexander J, Allendorf F et al (2011) Non-natives: 141 scientists object. Nature 475:36

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Swafford DL (2003) PAUP4. Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tang SQ, Wei F, Zeng LY et al (2009) Multiple introductions are responsible for the disjunct distributions of invasive Parthenium hysterophorus in China: evidence from nuclear and chloroplast DNA. Weed Res 49:373–380

    Article  CAS  Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908

    Article  Google Scholar 

  • USDA, NRCS (2011) The plants database. National Plant Data Center, Baton Rouge. http://plants.usda.gov. Accessed 16 April 2011

  • Valliant MT, Mack RN, Novak SJ (2007) Introduction history and population genetics of the invasive grass Bromus tectorum (Poaceae) in Canada. Am J Bot 94:1156–1169

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, New York

    Google Scholar 

  • Wilson JRU, Gairifo C, Gibson MR et al (2011) Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Divers Distrib 17:1030–1046

    Article  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by faculty startup fund to MPN from SDSU Department of Biology and Microbiology and in part by the US Forest Service, Rocky Mountain Research Station, Rapid City, SD. Nepal lab alumni Sajag Adhikary, Spencer Schreier and Kenton MacArthur provided lab work assistance and useful discussion on the manuscript. We thank Carol Erickson, Teresa Y. Harris and Ryan Frickel for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav P. Nepal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piya, S., Nepal, M.P., Butler, J.L. et al. Genetic diversity and population structure of sickleweed (Falcaria vulgaris; Apiaceae) in the upper Midwest USA. Biol Invasions 16, 2115–2125 (2014). https://doi.org/10.1007/s10530-014-0651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0651-z

Keywords

Navigation