Biological Invasions

, Volume 16, Issue 2, pp 429–443 | Cite as

Soil quality: a key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br.

  • A. Novoa
  • R. Rodríguez
  • D. Richardson
  • L. González
Original Paper


The cycles of carbon, nitrogen and phosphorus are essential components of the processes and functioning of ecosystems. The functional capacity of the soil microbial community that drives these cycles varies among soils dominated by different plant species. This work aims to quantify changes in soil features of coastal ecosystems of the Iberian Peninsula caused by the invasion of Carpobrotus edulis by analysing soil chemical properties and extracellular soil enzymes. We also analyse the influence of these changes on the germination and early development of native species Malcolmia littorea (L.) R.Br. and Scabiosa atropurpupea L. and the alien C. edulis. Our results reveal that when C. edulis invades a dune ecosystem, it causes significant changes to pH, enzymatic activities, nutrients, salinity and moisture content of the soil (the level of the change depends on the initial characteristics of the invaded ecosystem). These changes alter the germination process of native and invasive plants in different ways. The results of this work suggest mechanism whereby C. edulis competes with native species at an early stage and breaks the initial abiotic resistance of newly invaded landscapes. This study highlights the importance of studying the effects of invasive plant-soil interactions on the germination and emergence of different plant species in order to fully understand the effects of invasion and to consider options for restoration activities in areas invaded by C. edulis.


Biological invasions Enzymatic activities Seed germination Seedling development 



We thank Paula González and Marga Rubido for valuable comments on the manuscript, and María Fernández for technical assistance.


  1. Albert ME (1995) Portrait of an invader II: the ecology and management of C. edulis. California Alien Pest Plant Council (CalEPPC) News. SpringGoogle Scholar
  2. Allen SE, Grimshaw HM, Parkinson JA, Quarmby CL (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, OxfordGoogle Scholar
  3. Allison SD, Vitousek PM (2004) Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36:285–296Google Scholar
  4. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944CrossRefGoogle Scholar
  5. Balestri E, Cinelli F (2004) Germination and early-seedling establishment capacity of Pancratium maritimum L. (Amaryllidaceae) on coastal dunes in the north-western Mediterranean. J Coastal Res 20:761–770CrossRefGoogle Scholar
  6. Barbour MG, De Jong TM, Pavlik BM (1985) Marine beach and dune plant communities. In: Physiological ecology of North American plant communities. Springer, Netherlands, pp 296–322Google Scholar
  7. Boon PI, Johnstone L (1997) Organic matter decay in coastal wetlands: an inhibitory role for essential oil from Melaleuca alternifolia leaves? Arch Hydrobiol 138:438–449Google Scholar
  8. Bothe H, Ferguson SJ, Newton WE (2006) Biology of the nitrogen cycle. Elsevier, OxfordGoogle Scholar
  9. Bradbeer JW (1998) Seed dormancy and germination. Backie and Son Limited, GlasgowGoogle Scholar
  10. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45CrossRefGoogle Scholar
  11. Bubel N (1988) The new seed-starters handbook. Rodale Press, Emmaus, PAGoogle Scholar
  12. Chiapusio G, Sanchez AM, Reigosa MJ, González L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453CrossRefGoogle Scholar
  13. Cogoni A, Brundu G, Zedda L (2011) Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwigia 92:159–175CrossRefGoogle Scholar
  14. Comisión de métodos analíticos del instituto nacional de edafología y agrobiología (1973) Determinaciones analíticas en suelos. Normalización de métodos. Anales de Edafología y Agrobiología 32:1151–1179Google Scholar
  15. Conser C, Connor EF (2009) Assessing the residual effects of Carpobrotus edulis invasion, implications for restoration. Biol Invas 11:349–358CrossRefGoogle Scholar
  16. Council directive 92/43/EEC (1992) Conservation of natural habitats, wild fauna and flora. Off J Eur Union 206:7 Google Scholar
  17. D’Antonio CM, Mahall BE (1991) Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis, and two native shrub species in California coastal scrub. Am J Bot 78:885–894CrossRefGoogle Scholar
  18. Dalton P, Perrier C, Martinez Reyes G (2006) Nouveau catalogue de la flore vaculaire de l’archipel Juan Fernández, Chile. Acta Botanica Gallica 153:399–587CrossRefGoogle Scholar
  19. de la Pe ña E, de Clercq N, Bonte D, Roiloa S, Rodriguez-Echevarria S, Freitas H (2010) Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis. Biol Invas 12:3637–3648CrossRefGoogle Scholar
  20. Del Vecchio S, Giovi E, Izzi CF, Abbate G, Acosta ATR (2012) Malcolmia littorea: the isolated Italian population in the European context. Journal for Nature Conservation 20:357–363CrossRefGoogle Scholar
  21. Dias LS (2001) Describing phytotoxic effects on cumulative germination. J Chem Ecol 27:411–418PubMedCrossRefGoogle Scholar
  22. Donath TW, Eckstein RL (2009) Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant Ecol 207:257–268CrossRefGoogle Scholar
  23. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523CrossRefGoogle Scholar
  24. Ehrenfeld JG (2004) Implications of invasive species for belowground community and nutrient. Weed Technol 18:1232–1235CrossRefGoogle Scholar
  25. Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300CrossRefGoogle Scholar
  26. FAO-ISRIC-ISSS (1998) World reference base for soil resources. Acco Press, LeuvenGoogle Scholar
  27. Gagné JM, Houle G (2002) Factors responsible for Honckenya peploides (Caryophyllaceae) and Leymus mollis (Poaceae) spatial segregation on subarctic coastal dunes. Botanical Society of America 89:479–485Google Scholar
  28. GEIB (2006) TOP 20: Las 20 especies exóticas invasoras más dañinas presentes en España. GEIB, Serie Técnica 2Google Scholar
  29. German DP, Weintraub MN, Grandy S, Lauber CL (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397CrossRefGoogle Scholar
  30. Gooding EGB (1947) Observations on the sand dunes of Barbados, British West Indies. J Ecol 34:111–125CrossRefGoogle Scholar
  31. Grierson PF, Adams MA (2000) Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in southwestern Australia. Soil Biol Biochem 32:1817–1827CrossRefGoogle Scholar
  32. Grootjans A, Adema E, Bekker R, Lammerts E (2008) Why Coastal Dune slacks sustain a high biodiversity. Springer, Coastal DunesGoogle Scholar
  33. Guitián F, Carballas T (1976) Técnicas de análisis de suelos. Pico Sacro, Santiago de CompostelaGoogle Scholar
  34. Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J Arid Environ 1:165–191Google Scholar
  35. Jakmunee J, Junsomboon J (2009) Determination of available phosphorus in soils by using a new extraction procedure and a flow injection amperometric system. Talanta 79:1076–1080PubMedCrossRefGoogle Scholar
  36. Jander G (1961) Análisis Volumétrico. Unión tipográfica. Editorial hispanoamericana, MéxicoGoogle Scholar
  37. Jones CA, Koenig RT, Ellsworth JW, Brown BD, Jackson GD (2007) Management of urea fertilizer to minimize volatilization. MSU ExtensionGoogle Scholar
  38. Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10(2):177–190Google Scholar
  39. Kandeler E, Gerber H (1998) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soil 6:68–72Google Scholar
  40. Kempers AJ (1974) Determination of sub-microquantities of ammonium and nitrates in soils with fenol, sodium nitroprusside and hypochlorite. Geoderma 12:201–206CrossRefGoogle Scholar
  41. Khurana E, Singh JS (2004) Germination and seedling growth of five tree species from tropical dry forest in relation to water stress: impact of seed size. J Trop Ecol 20:385–396CrossRefGoogle Scholar
  42. Kononova M (1982) Materia orgánica del suelo: su naturaleza, propiedades y métodos de investigación. Oikos-TauGoogle Scholar
  43. Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166CrossRefGoogle Scholar
  44. Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Royal Soc B 270:775–781CrossRefGoogle Scholar
  45. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714PubMedCrossRefGoogle Scholar
  46. Lichter J (1998) Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol Monogr 68:487–510Google Scholar
  47. Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299Google Scholar
  48. Lortie CJ, Cushman JH (2007) Effects of a directional abiotic gradient on plant community dynamics and invasion in a coastal dune system. J Ecol 95:468–481CrossRefGoogle Scholar
  49. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  50. Maun MA (2009) The biology of coastal sand dunes. Oxford University Press, OxfordGoogle Scholar
  51. Min BM (2006) Shoot growth and distribution pattern of Carex kobomugi in a natural stand. J Plant Biol 49:224–230CrossRefGoogle Scholar
  52. Misic C, Fabiano M (2005) Enzymatic activity on sandy beaches of the Ligurian sea (NW Mediterranean). Microbiol Ecol 49:513–522CrossRefGoogle Scholar
  53. National Herbarium of New South Wales (2010) PlantNet: New South Wales Flora Online. The plant information network system of the botanic gardens Trust Version 2.0. Online resourceGoogle Scholar
  54. Necajeva J, Ievinsh G (2008) Seed germination of six coastal plant species of the Baltic region: effect of salinity and dormancy-breaking treatments. Seed Sci Res 18:173–177CrossRefGoogle Scholar
  55. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  56. Novoa A, González L, Moravcová L, Pysek P (2012) Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a co-occuring native, Malcolmia littorea. PLoS ONE 7(12):e53166Google Scholar
  57. Novoa A, González L, Moravcová L, Pysek P (2013) Constraints to native plant species establishment in coastal dune communities invaded by Carpobrotus edulis: implications for restoration. Biol Conserv 164:1–9Google Scholar
  58. Okay Y, Günöz A, Khawar KM (2011) Effects of cold stratification pretreatment and pH level on germination of Centaurea tchihatcheffii Fisch. Et Mey. seeds. Afr J Biotech 10:1545–1549Google Scholar
  59. Pancholy SK, Rice EL (1972) Effect of storage conditions on activities of urease, invertase, amylase, and dehydrogenase in soil. Soil Sci Soc Am Proc 36:536–537CrossRefGoogle Scholar
  60. Pemadasa MA, Lovell PH (1975) Factors controlling germination of some dune annuals. J Ecol 63:41–59CrossRefGoogle Scholar
  61. Pye K, Tsoar H (2009) Aeolian sand and sand dunes. SpringerGoogle Scholar
  62. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z et al (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244PubMedCrossRefGoogle Scholar
  63. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737CrossRefGoogle Scholar
  64. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170(3):445–457Google Scholar
  65. Rodgers JC, Parker KC (2003) Distribution of alien plant species in relation to human disturbance on the Georgia Sea Islands. Diversity Distrib 9:385–398CrossRefGoogle Scholar
  66. Rukshana F, Butterly CR, Baldock JA, Xu JM, Tang C (2012) Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralization. Soil Biol Biochem 51:35–43CrossRefGoogle Scholar
  67. Santoro R, Jucker T, Carranza ML, Acosta ATR (2011) Assessing the effects of Carpobrotus invasion on coastal dune soils. Does the nature of the invaded habitat matter? Comm Ecol 12:234–240CrossRefGoogle Scholar
  68. Santoro R, Jucker T, Carboni M, Acosta ATR (2012) Patterns of plant community assembly in invaded and non-invaded communities along a natural environmental gradient. J Veg Sci 23:483–494CrossRefGoogle Scholar
  69. Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98(1):255–262Google Scholar
  70. Seneca ED (1972) Seedling response to salinity in four dune grasses from the Outer Banks of North Carolina. Ecology 53:465–471CrossRefGoogle Scholar
  71. Speir TW, Ross DJ (1978) Soil phosphatase and sulfatase. In: Burns RG (ed) Soil enzymes. Academic Press, San Diego, pp 197–250Google Scholar
  72. Stege PW, Messina GA, Bianchi G, Olsina RA, Raba J (2009) Determination of arylsulphatase and phosphatase enzyme activities in soil using screen-printed electrodes modified with multi-walled carbon nanotubes. Soil Biol Biochem 41:2444–2452CrossRefGoogle Scholar
  73. Süβ K, Storm C, Zehm A, Schwabe A (2008) Succession in inland sand ecosystems: which factors determine the occurrence of the tall grass species Calamagrostis epigejos (L.) Roth and Stipa capillata L.? Plant Biol 6:465–476Google Scholar
  74. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRefGoogle Scholar
  75. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250CrossRefGoogle Scholar
  76. Tielbörger K, Prasse R (2009) Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos 118:792–800CrossRefGoogle Scholar
  77. Traveset A, Moragues E, Valladares F (2008) Spreading of the invasive Carpobrotus aff. acinaciformis in Mediterranean ecosystems: the advantage of performing in different light environments. Appl Veg Sci 11:45–54CrossRefGoogle Scholar
  78. Turner BL (2010) Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl Environ Microbiol 76:6485–6493PubMedCentralPubMedCrossRefGoogle Scholar
  79. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1993) Flora Europaea. Cambridge Univ Press, CambridgeGoogle Scholar
  80. U. S. Government (2010) National Genetic Resources Program. Germplasm Resources Information Network. The plants Database. National Plant Data Center, Baton Rouge, LA 70874-4490 USAGoogle Scholar
  81. Van der Watt E, Pretorius JC (2001) Purification and identification of active antibacterial components in C. edulis. L. J Ethnopharm 76:87–91CrossRefGoogle Scholar
  82. Vilà M, Tessier M, Suehs CM, Brundu G, Carta L, Galanidis A, Lambdon P, Manca M, Medail F, Moragues E, Traveset A, Troumbis AY, Hulme PE (2006) Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861CrossRefGoogle Scholar
  83. Vilà M, Siamantziouras AD, Brundu G, Camarda I, Lambdon P, Medail F, Moragues E, Suehs CM, Traveset A, Troumbis AY, Hulme PE (2008) Widespread resistance of Mediterranean island ecosystems to the establishment of three alien species. Diversity Distrib 14:839–851Google Scholar
  84. Vivrette NJ, Muller CH (1977) Mechanism of invasion and dominance of coastal grassland by Mesembyranthemum crystallinum. Ecol Monogr 47:301–318CrossRefGoogle Scholar
  85. Webb CJ, Sykes WR, Garnock-Jones PJ (1988) Flora of New Zealand, volume IV: naturalised pteridophytes, gymnosperms, dicotyledons. Botany Division, DSIR, ChristchurchGoogle Scholar
  86. Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719CrossRefGoogle Scholar
  87. Zedda L, Cogoni A, Flore F, Brundu G (2013) Impacts of alien plants and man-made disturbance on soil-growing bryophyte and lichen diversity in coastal areas of Sardinia (Italy). Plant Biosyst 144:547–562Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Novoa
    • 1
    • 2
  • R. Rodríguez
    • 1
  • D. Richardson
    • 2
  • L. González
    • 1
  1. 1.Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de BioloxíaUniversidade de VigoVigoSpain
  2. 2.Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations