Skip to main content

Advertisement

Log in

Soil quality: a key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br.

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The cycles of carbon, nitrogen and phosphorus are essential components of the processes and functioning of ecosystems. The functional capacity of the soil microbial community that drives these cycles varies among soils dominated by different plant species. This work aims to quantify changes in soil features of coastal ecosystems of the Iberian Peninsula caused by the invasion of Carpobrotus edulis by analysing soil chemical properties and extracellular soil enzymes. We also analyse the influence of these changes on the germination and early development of native species Malcolmia littorea (L.) R.Br. and Scabiosa atropurpupea L. and the alien C. edulis. Our results reveal that when C. edulis invades a dune ecosystem, it causes significant changes to pH, enzymatic activities, nutrients, salinity and moisture content of the soil (the level of the change depends on the initial characteristics of the invaded ecosystem). These changes alter the germination process of native and invasive plants in different ways. The results of this work suggest mechanism whereby C. edulis competes with native species at an early stage and breaks the initial abiotic resistance of newly invaded landscapes. This study highlights the importance of studying the effects of invasive plant-soil interactions on the germination and emergence of different plant species in order to fully understand the effects of invasion and to consider options for restoration activities in areas invaded by C. edulis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albert ME (1995) Portrait of an invader II: the ecology and management of C. edulis. California Alien Pest Plant Council (CalEPPC) News. Spring

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby CL (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford

  • Allison SD, Vitousek PM (2004) Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36:285–296

    Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Balestri E, Cinelli F (2004) Germination and early-seedling establishment capacity of Pancratium maritimum L. (Amaryllidaceae) on coastal dunes in the north-western Mediterranean. J Coastal Res 20:761–770

    Article  Google Scholar 

  • Barbour MG, De Jong TM, Pavlik BM (1985) Marine beach and dune plant communities. In: Physiological ecology of North American plant communities. Springer, Netherlands, pp 296–322

  • Boon PI, Johnstone L (1997) Organic matter decay in coastal wetlands: an inhibitory role for essential oil from Melaleuca alternifolia leaves? Arch Hydrobiol 138:438–449

    Google Scholar 

  • Bothe H, Ferguson SJ, Newton WE (2006) Biology of the nitrogen cycle. Elsevier, Oxford

  • Bradbeer JW (1998) Seed dormancy and germination. Backie and Son Limited, Glasgow

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Bubel N (1988) The new seed-starters handbook. Rodale Press, Emmaus, PA

  • Chiapusio G, Sanchez AM, Reigosa MJ, González L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453

    Article  CAS  Google Scholar 

  • Cogoni A, Brundu G, Zedda L (2011) Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwigia 92:159–175

    Article  Google Scholar 

  • Comisión de métodos analíticos del instituto nacional de edafología y agrobiología (1973) Determinaciones analíticas en suelos. Normalización de métodos. Anales de Edafología y Agrobiología 32:1151–1179

    Google Scholar 

  • Conser C, Connor EF (2009) Assessing the residual effects of Carpobrotus edulis invasion, implications for restoration. Biol Invas 11:349–358

    Article  Google Scholar 

  • Council directive 92/43/EEC (1992) Conservation of natural habitats, wild fauna and flora. Off J Eur Union 206:7

    Google Scholar 

  • D’Antonio CM, Mahall BE (1991) Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis, and two native shrub species in California coastal scrub. Am J Bot 78:885–894

    Article  Google Scholar 

  • Dalton P, Perrier C, Martinez Reyes G (2006) Nouveau catalogue de la flore vaculaire de l’archipel Juan Fernández, Chile. Acta Botanica Gallica 153:399–587

    Article  Google Scholar 

  • de la Pe ña E, de Clercq N, Bonte D, Roiloa S, Rodriguez-Echevarria S, Freitas H (2010) Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis. Biol Invas 12:3637–3648

    Article  Google Scholar 

  • Del Vecchio S, Giovi E, Izzi CF, Abbate G, Acosta ATR (2012) Malcolmia littorea: the isolated Italian population in the European context. Journal for Nature Conservation 20:357–363

    Article  Google Scholar 

  • Dias LS (2001) Describing phytotoxic effects on cumulative germination. J Chem Ecol 27:411–418

    Article  CAS  PubMed  Google Scholar 

  • Donath TW, Eckstein RL (2009) Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant Ecol 207:257–268

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2004) Implications of invasive species for belowground community and nutrient. Weed Technol 18:1232–1235

    Article  Google Scholar 

  • Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300

    Article  Google Scholar 

  • FAO-ISRIC-ISSS (1998) World reference base for soil resources. Acco Press, Leuven

    Google Scholar 

  • Gagné JM, Houle G (2002) Factors responsible for Honckenya peploides (Caryophyllaceae) and Leymus mollis (Poaceae) spatial segregation on subarctic coastal dunes. Botanical Society of America 89:479–485

    Google Scholar 

  • GEIB (2006) TOP 20: Las 20 especies exóticas invasoras más dañinas presentes en España. GEIB, Serie Técnica 2

  • German DP, Weintraub MN, Grandy S, Lauber CL (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397

    Article  CAS  Google Scholar 

  • Gooding EGB (1947) Observations on the sand dunes of Barbados, British West Indies. J Ecol 34:111–125

    Article  Google Scholar 

  • Grierson PF, Adams MA (2000) Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in southwestern Australia. Soil Biol Biochem 32:1817–1827

    Article  CAS  Google Scholar 

  • Grootjans A, Adema E, Bekker R, Lammerts E (2008) Why Coastal Dune slacks sustain a high biodiversity. Springer, Coastal Dunes

    Google Scholar 

  • Guitián F, Carballas T (1976) Técnicas de análisis de suelos. Pico Sacro, Santiago de Compostela

    Google Scholar 

  • Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J Arid Environ 1:165–191

    Google Scholar 

  • Jakmunee J, Junsomboon J (2009) Determination of available phosphorus in soils by using a new extraction procedure and a flow injection amperometric system. Talanta 79:1076–1080

    Article  CAS  PubMed  Google Scholar 

  • Jander G (1961) Análisis Volumétrico. Unión tipográfica. Editorial hispanoamericana, México

  • Jones CA, Koenig RT, Ellsworth JW, Brown BD, Jackson GD (2007) Management of urea fertilizer to minimize volatilization. MSU Extension

  • Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10(2):177–190

    Google Scholar 

  • Kandeler E, Gerber H (1998) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soil 6:68–72

    Google Scholar 

  • Kempers AJ (1974) Determination of sub-microquantities of ammonium and nitrates in soils with fenol, sodium nitroprusside and hypochlorite. Geoderma 12:201–206

    Article  CAS  Google Scholar 

  • Khurana E, Singh JS (2004) Germination and seedling growth of five tree species from tropical dry forest in relation to water stress: impact of seed size. J Trop Ecol 20:385–396

    Article  Google Scholar 

  • Kononova M (1982) Materia orgánica del suelo: su naturaleza, propiedades y métodos de investigación. Oikos-Tau

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  • Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Royal Soc B 270:775–781

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Lichter J (1998) Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol Monogr 68:487–510

    Google Scholar 

  • Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299

    CAS  Google Scholar 

  • Lortie CJ, Cushman JH (2007) Effects of a directional abiotic gradient on plant community dynamics and invasion in a coastal dune system. J Ecol 95:468–481

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Maun MA (2009) The biology of coastal sand dunes. Oxford University Press, Oxford

    Google Scholar 

  • Min BM (2006) Shoot growth and distribution pattern of Carex kobomugi in a natural stand. J Plant Biol 49:224–230

    Article  Google Scholar 

  • Misic C, Fabiano M (2005) Enzymatic activity on sandy beaches of the Ligurian sea (NW Mediterranean). Microbiol Ecol 49:513–522

    Article  CAS  Google Scholar 

  • National Herbarium of New South Wales (2010) PlantNet: New South Wales Flora Online. The plant information network system of the botanic gardens Trust Version 2.0. Online resource

  • Necajeva J, Ievinsh G (2008) Seed germination of six coastal plant species of the Baltic region: effect of salinity and dormancy-breaking treatments. Seed Sci Res 18:173–177

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra

  • Novoa A, González L, Moravcová L, Pysek P (2012) Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a co-occuring native, Malcolmia littorea. PLoS ONE 7(12):e53166

    Google Scholar 

  • Novoa A, González L, Moravcová L, Pysek P (2013) Constraints to native plant species establishment in coastal dune communities invaded by Carpobrotus edulis: implications for restoration. Biol Conserv 164:1–9

    Google Scholar 

  • Okay Y, Günöz A, Khawar KM (2011) Effects of cold stratification pretreatment and pH level on germination of Centaurea tchihatcheffii Fisch. Et Mey. seeds. Afr J Biotech 10:1545–1549

    Google Scholar 

  • Pancholy SK, Rice EL (1972) Effect of storage conditions on activities of urease, invertase, amylase, and dehydrogenase in soil. Soil Sci Soc Am Proc 36:536–537

    Article  CAS  Google Scholar 

  • Pemadasa MA, Lovell PH (1975) Factors controlling germination of some dune annuals. J Ecol 63:41–59

    Article  Google Scholar 

  • Pye K, Tsoar H (2009) Aeolian sand and sand dunes. Springer

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z et al (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170(3):445–457

    Google Scholar 

  • Rodgers JC, Parker KC (2003) Distribution of alien plant species in relation to human disturbance on the Georgia Sea Islands. Diversity Distrib 9:385–398

    Article  Google Scholar 

  • Rukshana F, Butterly CR, Baldock JA, Xu JM, Tang C (2012) Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralization. Soil Biol Biochem 51:35–43

    Article  CAS  Google Scholar 

  • Santoro R, Jucker T, Carranza ML, Acosta ATR (2011) Assessing the effects of Carpobrotus invasion on coastal dune soils. Does the nature of the invaded habitat matter? Comm Ecol 12:234–240

    Article  Google Scholar 

  • Santoro R, Jucker T, Carboni M, Acosta ATR (2012) Patterns of plant community assembly in invaded and non-invaded communities along a natural environmental gradient. J Veg Sci 23:483–494

    Article  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98(1):255–262

    Google Scholar 

  • Seneca ED (1972) Seedling response to salinity in four dune grasses from the Outer Banks of North Carolina. Ecology 53:465–471

    Article  Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulfatase. In: Burns RG (ed) Soil enzymes. Academic Press, San Diego, pp 197–250

    Google Scholar 

  • Stege PW, Messina GA, Bianchi G, Olsina RA, Raba J (2009) Determination of arylsulphatase and phosphatase enzyme activities in soil using screen-printed electrodes modified with multi-walled carbon nanotubes. Soil Biol Biochem 41:2444–2452

    Article  CAS  Google Scholar 

  • Süβ K, Storm C, Zehm A, Schwabe A (2008) Succession in inland sand ecosystems: which factors determine the occurrence of the tall grass species Calamagrostis epigejos (L.) Roth and Stipa capillata L.? Plant Biol 6:465–476

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Tielbörger K, Prasse R (2009) Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos 118:792–800

    Article  Google Scholar 

  • Traveset A, Moragues E, Valladares F (2008) Spreading of the invasive Carpobrotus aff. acinaciformis in Mediterranean ecosystems: the advantage of performing in different light environments. Appl Veg Sci 11:45–54

    Article  Google Scholar 

  • Turner BL (2010) Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl Environ Microbiol 76:6485–6493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1993) Flora Europaea. Cambridge Univ Press, Cambridge

    Google Scholar 

  • U. S. Government (2010) National Genetic Resources Program. Germplasm Resources Information Network. The plants Database. National Plant Data Center, Baton Rouge, LA 70874-4490 USA

  • Van der Watt E, Pretorius JC (2001) Purification and identification of active antibacterial components in C. edulis. L. J Ethnopharm 76:87–91

    Article  Google Scholar 

  • Vilà M, Tessier M, Suehs CM, Brundu G, Carta L, Galanidis A, Lambdon P, Manca M, Medail F, Moragues E, Traveset A, Troumbis AY, Hulme PE (2006) Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861

    Article  Google Scholar 

  • Vilà M, Siamantziouras AD, Brundu G, Camarda I, Lambdon P, Medail F, Moragues E, Suehs CM, Traveset A, Troumbis AY, Hulme PE (2008) Widespread resistance of Mediterranean island ecosystems to the establishment of three alien species. Diversity Distrib 14:839–851

    Google Scholar 

  • Vivrette NJ, Muller CH (1977) Mechanism of invasion and dominance of coastal grassland by Mesembyranthemum crystallinum. Ecol Monogr 47:301–318

    Article  Google Scholar 

  • Webb CJ, Sykes WR, Garnock-Jones PJ (1988) Flora of New Zealand, volume IV: naturalised pteridophytes, gymnosperms, dicotyledons. Botany Division, DSIR, Christchurch

    Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    Article  CAS  Google Scholar 

  • Zedda L, Cogoni A, Flore F, Brundu G (2013) Impacts of alien plants and man-made disturbance on soil-growing bryophyte and lichen diversity in coastal areas of Sardinia (Italy). Plant Biosyst 144:547–562

    Google Scholar 

Download references

Acknowledgments

We thank Paula González and Marga Rubido for valuable comments on the manuscript, and María Fernández for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Novoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novoa, A., Rodríguez, R., Richardson, D. et al. Soil quality: a key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br.. Biol Invasions 16, 429–443 (2014). https://doi.org/10.1007/s10530-013-0531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0531-y

Keywords

Navigation