Skip to main content

Advertisement

Log in

Lack of superiority of invasive over co-occurring native riparian tree seedling species

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The invasive tree species Acer negundo, Ailanthus altissima, Elaeagnus angustifolia and Robinia pseudoacacia are nowadays spreading in inner Spain riparian forests, where they co-occur with the natives Fraxinus angustifolia, Populus alba and Ulmus minor. In these forests, the natural light and soil moisture conditions are being altered by different human activities, as river channelization and regulation. These new environmental conditions may favor invasive species to the detriment of natives. In order to predict potential shifts of species composition in inner Spain riparian forests, we experimentally compared seedling and sapling performance across the four invasive and the three native mentioned species. Seeds were sown along an experimental gradient with four levels of light (100, 65, 35, 7 % of full irradiance) factorially combined with two levels of soil moisture (61 and 40 % of soil gravimetric water content). We compared plant biomass at the end of the first and second growing seasons, relative growth rates, biomass allocation to roots (RWR), stems (SWR) and leaves (LWR), time to emergence (Temerg) and net assimilation rate per unit of leaf mass (NARm) between origins and across species. Biomass accumulation greatly varied across species. However, invaders did not grow on average more than natives. Under high resource conditions, all species tended to grow more and similarly. Only the native U. minor and the invader A. negundo were not hampered by low moisture and/or low light availabilities. The absence of superiority of invaders over natives suggests that the former will not displace the latter in inner Spain riparian forests. However, human activities promoting shade and drought stress in floodplains may benefit the invasive A. negundo in the long term, as the growth of its seedlings is less declined by these conditions than the growth of the rest of the studied species. Thus, management effort should be focused in monitoring and preventing this species spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Baraloto C, Goldberg DE, Bonal D (2005) Performance trade-offs among tree seedlings in contrasting microhabitats. Ecology 86(9):2461–2472

    Article  Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121(2):183–192

    Article  Google Scholar 

  • Bellingham PJ, Duncan RP, Lee WG, Buxton RP (2004) Seedling growth rate and survival do not predict invasiveness in naturalized woody plants in New Zealand. Oikos 106:308–316

    Article  Google Scholar 

  • Blanco Castro E, Casado González MA, Costa Tenorio M, Escribano Bombín R, García Antón M, Génova Fuster M, Gómez Manzaneque MA, Gómez Manzaneque F, Moreno Saiz JC, Morla Juaristi C, Regato Pajares P, Sainz Ollero H (2005) Los bosques ibéricos: una interpretación geobotánica. Editorial Planeta, Barcelona

    Google Scholar 

  • Blumenthal DM, Hufbauer RA (2007) Increased plant size in exotic populations: a common garden test with 14 invasive species. Ecology 88(11):2758–2765

    Article  PubMed  Google Scholar 

  • Brasier CM, Buck K, Paoletti M, Crawford L, Kirk S (2004) Molecular analysis of evolutionary changes in populations of Ophiostoma novo-ulmi. Inv Agr: Sist y Rec For 13:93–103

    Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbours: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Castro J (2006) Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Ann Bot 98:1233–1240

    Article  PubMed  Google Scholar 

  • Castro-Díez P, Navarro J, Pintado A, Sancho LG, Maestro M (2006) Interactive effects of shade and watering on the performance of seedlings of three Mediterranean Quercus species. Tree Physiol 26:389–400

    Article  PubMed  Google Scholar 

  • Castro-Díez P, Navarro J, Maestro M (2007) Effects of moderate shade and irrigation with eutrophicated water on the nitrogen economy of Mediterranean oak seedlings. Flora 203(3):243–253

    Article  Google Scholar 

  • Castro-Díez P, Godoy O, Saldaña A, Richardson DM (2011) Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. Divers Distrib 17:934–945

    Article  Google Scholar 

  • Chmura DJ, Rahman MS, Tjoelker MG (2007) Crown structure and biomass allocation patterns modulate aboveground productivity in young loblolly pine and slash pine. For Ecol Manag 243(2–3):219–230

    Article  Google Scholar 

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, sub continental and oceanic regions of Europe. J Appl Ecol 45:448–458

    Article  Google Scholar 

  • Chytrý M, Pyšek P, Wild J, Pino J, Maskell LC, Vilà M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. J Appl Ecol 15(1):98–107

    Google Scholar 

  • Closset-Kopp D, Saguez R, Decocq G (2011) Differential growth patterns and fitness may explain contrasted performances of the invasive Prunus serotina in its exotic range. Biol Invasions 13:1341–1355

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptative? A meta-analysis. Ecol Lett 14(4):419–431

    Article  PubMed  Google Scholar 

  • de Feo V, de Martino L, Santoro A, Leone A, Pizza C, Franceschelli S, Pascale M (2005) Antiproliferative effects of tree-of-heaven (Ailanthus altissima Swingle). Phytother Res 19:226–230

    Article  PubMed  Google Scholar 

  • Deka RN, Wairiu M, Mtakwa PW, Mullins CE, Veenendaal EM, Townend J (1995) Use and accuracy of the filter paper technique for measurement of soil matric potential. Eur J Soil Sci 46:233–238

    Article  Google Scholar 

  • DeWine JM, Cooper DJ (2007) Effects of river regulation on riparian box elder (Acer negundo) forest in canyons of the upper Colorado River basin, USA. Wetlands 27:278–289

    Article  Google Scholar 

  • DeWine JM, Cooper DJ (2008) Canopy shade and the successional replacement of tamarisk by native box elder. J Appl Ecol 45:505–514

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523

    Article  CAS  Google Scholar 

  • Feng YL, Fu GL (2008) Nitrogen allocation, partitioning and use efficiency in three invasive plant species in comparison with their native congeners. Biol Invasions 10:891–902

    Article  Google Scholar 

  • Feng Y, Wang J, Sang W (2007) Biomass allocation, morphology and photosynthesis of invasive and non invasive exotic species at four irradiance levels. Acta Oecol 31:40–47

    Article  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Glenn EW, Nagler PL (2005) Comparative ecophysiology of Tamarix ramosissima and native trees in western US riparian zones. J Arid Environ 61:419–446

    Article  Google Scholar 

  • Godoy O, Castro-Díez P, Valladares F, Costa-Tenorio M (2009) Different flowering phenology of alien invasive species in Spain: evidence for the use of an empty temporal niche? Plant Biol 11(6):803–811

    Article  CAS  PubMed  Google Scholar 

  • González E, González-Sanchís M, Cabezas A, Comín FA, Muller E (2010) Recent changes in the riparian forest of a large regulated Mediterranean river: implications for management. Environ Manage 45:669–681

    Article  PubMed  Google Scholar 

  • González-Muñoz N, Castro-Díez P, Fierro-Brunnenmeister N (2011) Establishment success of coexisting native and exotic trees under an experimental gradient of irradiance and soil moisture. Environ Manage 48:764–773

    Article  PubMed  Google Scholar 

  • Grotkopp E, Rejmánek M, Rost TL (2002) Towards a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am Nat 159(4):396–419

    Article  PubMed  Google Scholar 

  • Gurevitch J, Howard TG, Ashton IW, Leger EA, Howe KM, Woo E, Lerdau M (2008) Effects of experimental manipulation of light and nutrients on establishment of seedlings of native and invasive woody species in Long Island, NY forests. Biol Invasions 10:821–831

    Article  Google Scholar 

  • Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D (2005) Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8:1066–1074

    Article  Google Scholar 

  • Heisey RM (1990) Evidence for allelopathy by tree of heaven (Ailanthus altissima). J Chem Ecol 16(6):2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Heisey RM (1996) Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am J Bot 83(2):192–200

    Article  Google Scholar 

  • Heisey RM, Heisey TK (2003) Herbicidal effects under field conditions of Ailanthus altissima bark extract which contains ailanthone. Plant Soil 256:85–99

    Article  CAS  Google Scholar 

  • Howe HF (1990) Survival and growth of juvenile Virola surinamensis in Panama: effects of herbivory and canopy closure. J Trop Ecol 6:259–280

    Article  Google Scholar 

  • Howe HF, Richter W (1982) Effects of seed size on seedling size in Virola surinamensis: a within and between tree analysis. Oecologia 53:347–351

    Article  Google Scholar 

  • Jones RH, Sharitz RR (1989) Potential advantages and disadvantages of germinating early for trees in floodplain forests. Oecologia 81:443–449

    Article  Google Scholar 

  • Katz GL, Shafroth PB (2003) Biology, ecology and management of Elaeagnus angustifolia L. (Russian olive) in western North America. Wetlands 23(4):763–777

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Knapp LB, Canham CD (2000) Invasion of an old growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315

    Article  Google Scholar 

  • Kobe RK, Coates KD (1997) Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species in northwestern British Columbia. Can J For Res 27(2):227–236

    Article  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of central Europe: Ailanthus altissima (Mill) Swingle. Perspect Plant Ecol Evol Syst 8:207–237

    Article  Google Scholar 

  • Lamarque JL, Delzon S, Lortie CJ (2011) Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biol Invasions 13:1969–1989

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lara F, Garillete R, Ramírez P (1996) Estudio de la vegetación de los ríos carpetanos de la cuenca del Jarama. Centro de Estudios y Experimentación de Obras Públicas. Ministerio de Fomento, Madrid

    Google Scholar 

  • Leishman MR, Haslehurst T, Ares A (2007) Leaf trait relationships of native and invasive plants: community and global-scale comparisons. New Phytol 176(3):635–643

    Article  CAS  PubMed  Google Scholar 

  • Marañón T, Grubb PJ (1993) Physiological-basis and ecological significance of the seed size and relative growth rate relationship in Mediterranean annuals. Funct Ecol 7(5):591–599

    Article  Google Scholar 

  • Martín JA, Solla A, Burón M, López-Almansa JC, Gil L (2006) Caracterización histórica, ecológica, taxonómica y fitosanitaria de una olmeda en Rivas-Vaciamadrid (Madrid). Inv Agr: Sist y Rec For 15(2):208–217

    Google Scholar 

  • Masaka K, Yamada K (2009) Variation in germination character of Robinia pseudoacacia L. (Leguminosae) seeds at individual tree level. J For Res 14:167–177

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383

    Article  Google Scholar 

  • Moles AT, Gruber MAM, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17

    Google Scholar 

  • Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Article  Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66(1):1–43

    Article  Google Scholar 

  • Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117(4):449–459

    Article  Google Scholar 

  • Pearcy RW, Valladares F, Wright SJ, de Paulis EL (2004) A functional analysis of the crown architecture of tropical forest Psychotria species: do species vary in light capture efficiency and consequently in carbon gain and growth? Oecologia 139:163–177

    Article  PubMed  Google Scholar 

  • Peñuelas J, Sardans J, Llusià J, Owen SM, Carnicer J, Giambelluca TW, Rezendes E, Waite M, Niinemets U (2010) Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Global Change Biol 16:2171–2185

    Article  Google Scholar 

  • Porté AJ, Lamarque LJ, Lortie CJ, Michalet R, Delzon S (2011) Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity. BMC Ecol 11(28):1–12

    Google Scholar 

  • Pyšek P, Prach D, Smilauer P (1995) Plant invasions: general aspects and special problems. SPB, Amsterdam

    Google Scholar 

  • Quero JL, Villar R, Marañón T, Zamora R, Poorter L (2007) Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am J Bot 94(11):1795–1803

    Article  PubMed  Google Scholar 

  • Reich PB, Tjoelker MG, Walters MB, Vander Klein DW, Buschena C (1998) Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol 12:327–338

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993

    Article  PubMed  Google Scholar 

  • Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431

    Article  Google Scholar 

  • Roy J (1990) In search of the characteristics of plant invaders. In: Di Castri F, Hansen AJ, Debussche M (eds) Biological invasions in Europe and the Mediterranean basin. Kluwer, Dordrecht

    Google Scholar 

  • Sanz Elorza M, Dana Sánchez ED, Sobrino Vespertinas E (2004) Atlas de plantas alóctonas invasoras en España. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Schupp EW (1988) Seed and early seedling predation in the forest understory and in treefall gaps. Oikos 51:71–78

    Article  Google Scholar 

  • Schupp EW (1995) Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am J Bot 82:399–409

    Article  Google Scholar 

  • Sher AA, Marshall DL (2003) Seedling competition between native Populus deltoides (Salicaceae) and exotic Tamarix ramosissima (Tamaricaceae) across water regimes and substrate types. Am J Bot 90:413–422

    Article  PubMed  Google Scholar 

  • Swanborough P, Westoby M (1996) Seedling relative growth rate and its components in relation to seed size: phylogenetically independent contrasts. Funct Ecol 10:176–184

    Article  Google Scholar 

  • Valladares F (2004a) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, Organismo Autónomo de Parques Naturales, Madrid, Spain

    Google Scholar 

  • Valladares F (2004b) Global change and radiation in Mediterranean forest ecosystems: a meeting point for ecology and management. In: Arianoutsou M, Papanastasis V (eds) Ecology, conservation and sustainable managements of Mediterranean type ecosystems of the world. Mill press, Rotterdam

    Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Verdú M, Traveset A (2005) Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology 86:1385–1394

    Article  Google Scholar 

  • Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238

    Article  Google Scholar 

  • Weber E (2003) Invasive plant species of the world. A reference guide to environmental weeds. CABI, Zurich

    Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6(4):207–215

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge R. Elvira and the staff of the Alcalá University Botanical Garden for their support to perform this experiment. We thank E. Varas and A. Ballesteros for her valuable help with the plant measurements. We are thankful to J. Levine and E. Mordecai for their comments in previous versions of this work. Funds were provided by the projects CGL2007-61873/BOS, CGL2010-16388/BOS of the Spanish Ministry of Science and Innovation and POII10-0179-4700 of the Junta de Comunidades de Castilla-La Mancha. N.G.M. was supported by a grant of the SMSI (FPI fellowship, BES-2008-002457) and by a grant of Alcalá University. O.G. acknowledges financial support from the Spanish Ministry of Education and Science and Fulbright Commission (FU-2009-0039). We are grateful to the support of the REMEDINAL-2 network (Comunidad de Madrid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. González-Muñoz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Muñoz, N., Castro-Díez, P. & Godoy, O. Lack of superiority of invasive over co-occurring native riparian tree seedling species. Biol Invasions 16, 269–281 (2014). https://doi.org/10.1007/s10530-013-0516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0516-x

Keywords

Navigation