Advertisement

Biological Invasions

, Volume 15, Issue 12, pp 2717–2730 | Cite as

Hybridization and introgression between the exotic Siberian elm, Ulmus pumila, and the native Field elm, U. minor, in Italy

  • Johanne Brunet
  • Juan E. Zalapa
  • Francesco Pecori
  • Alberto Santini
Original Paper

Abstract

In response to the first Dutch elm disease (DED) pandemic, Siberian elm, Ulmus pumila, was planted to replace the native elm, U. minor, in Italy. The potential for hybridization between these two species is high and repeated hybridization could result in the genetic swamping of the native species and facilitate the evolution of invasiveness in the introduced species. We used genetic markers to examine the extent of hybridization between these two species and to determine the pattern of introgression. We quantified and compared the level of genetic diversity between the hybrids and the two parental species. Hybrids between U. pumila and U. minor were common. The pattern of introgression was not as strongly biased towards U. pumila as was previously observed for hybrids between U. rubra and U. pumila in the United States. The levels of heterozygosity were similar between U. minor and the hybrids and both groups had higher levels of heterozygosity relative to U. pumila. The programs Structure and NewHybrids indicated the presence of first- (F1) and second- generation (F2) hybrids and of backcrosses in the hybrid population. The presence of healthy DED resistant U. minor individuals combined with the self-compatibility of U. minor could help explain the presence of F2 individuals in Italy. The presence of F2 individuals, where most of the variability present in the hybrids will be released, could facilitate rapid evolution and the potential evolution of invasiveness of U. pumila in Italy.

Keywords

Dutch elm disease Field elm Hybridization Introgression Microsatellites Siberian elm 

Notes

Acknowledgments

The authors wish to thank Ignazio Graziosi for providing some samples. Eric Collin, Luisa Ghelardini and Francesca Bagnoli commented on the manuscript. We gratefully acknowledge the National Science Foundation Minority Post-doctoral Fellowship to J.E. Zalapa (NSF award #0409651) and support from the USDA-ARS to J. Brunet.

References

  1. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedGoogle Scholar
  2. Ansaloni A (1934) La moria degli olmi e la diffusione in Italia dell’olmo siberiano. Bologna Ed. La Selva 119 ppGoogle Scholar
  3. Brasier CM (1988) Ophiostoma ulmi, cause of Dutch elm disease. Adv Plant Pathol 6:207–221CrossRefGoogle Scholar
  4. Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161CrossRefGoogle Scholar
  5. Burgess KS, Morgan M, Deverno L, Husband BC (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol Ecol 14:3471–3483PubMedCrossRefGoogle Scholar
  6. Cogolludo-Agustin MA, Agundez D, Gil L (2000) Identification of native and hybrid elms in Spain using isozyme gene markers. Heredity 85:157–166PubMedCrossRefGoogle Scholar
  7. Collada C, Fuentes-Utrilla P, Gil L, Cervera MT (2004) Characterization of microsatellite loci in Ulmus minor Miller and cross-amplification in U. glabra Hudson and U. laevis Pall. Mol Ecol Notes 4:731–732CrossRefGoogle Scholar
  8. Collevatti RS, Grattapaglia D, Duvall Hay J (2001) High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 86:60–67PubMedCrossRefGoogle Scholar
  9. Collin E (2002) Strategies and guidelines for the conservation of the genetic resources of Ulmus spp. In: Turok J, Eriksson G, Russell K, Borelli S (eds) Noble Hardwoods Network, 50–67, Report of the fourth meeting, September 1999, Gmunden, Austria, and the fifth meeting, May 2001, Blessington, Ireland. International Plant Genetic Resources Institute, RomeGoogle Scholar
  10. Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6:238–246CrossRefGoogle Scholar
  11. Daehler C, Strong D (1997) Hybridization between introduced smooth cordgrass (Spartina alternifl ora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA. Am J Bot 84:607–611PubMedCrossRefGoogle Scholar
  12. Ding J, Reardon R, Wu Y, Zheng H, Fu W (2006) Biological control of invasive plants through collaboration between China and the United States of America: a perspective. Biol Invasions 8:1439–1450CrossRefGoogle Scholar
  13. Ellstrand NC, Elam D (1993) Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  14. Ellstrand NC, Schierenbeck K (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? PNAS 97:7043–7050PubMedCrossRefGoogle Scholar
  15. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  16. Goidanich G (1936) La moria dell’olmo (Graphium ulmi). Ramo editoriale degli agricoltori, Roma 134 ppGoogle Scholar
  17. Goidanich G (1941) Il problema della grafiosi dell’olmo nella fase risolutiva. Annali della R. Accademia di agricoltura di Bologna 1:3–23Google Scholar
  18. Goidanich G, Azzaroli F (1941) Relazione sulle esperienze di selezione di olmi resistenti alla grafiosi e di inoculazioni artificiali di Graphium ulmi eseguite nel 1939–1940. Boll R Staz Pat Veg 21:287–306Google Scholar
  19. Goodall-Copestake WP, Hollingsworth ML, Jenkins GI, Collin E (2005) Molecular markers and ex situ conservation of the European elms (Ulmus spp.). Biol Conserv 122:537–546CrossRefGoogle Scholar
  20. Hedge SG, Nason JD, Clegg JM, Ellstrand NC (2006) The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–1197Google Scholar
  21. Heybroek HM (1968) Taxonomy, crossability and breeding of elms. Typescript presented at international symposium on Dutch elm disease, Ames, Iowa, 26–28 Feb, pp 25Google Scholar
  22. Kamen H (1997) Philip of Spain. Ed. espanola, Siglo XXI de Espana editores, MadridGoogle Scholar
  23. Keim P, Paige KN, Whitham TG, Lark KG (1989) Genetic analysis of an interspecific hybrid swarm of Populus: Occurrence of unidirectional introgression. Genetics 123:557–565PubMedGoogle Scholar
  24. Lester DT, Smalley EB (1972a) Response of Ulmus pumila and U. pumila X U. rubra hybrids to inoculation with Ceratocystis ulmi. Phytopathology 62:848–852CrossRefGoogle Scholar
  25. Lester DT, Smalley EB (1972b) Variation in ornamental traits and disease tolerance among crosses of Ulmus pumila, U. rubra and putative natural hybrids. Silvae Genetica 21:193–197Google Scholar
  26. Machon N, Lefranc M, Bilger I, Mazer SJ, Sarr A (1997) Allozyme variation in Ulmus species from France: analysis of differentiation. Heredity 78:12–20PubMedCrossRefGoogle Scholar
  27. Mittempergher L, La Porta N (1991) Hybridization studies in the Eurasian Species of Elm (Ulmus spp.). Silvae Genetica 40:237–243Google Scholar
  28. Mittempergher L, Santini A (2004) The history of elm breeding. Investigación Agraria, Sistemas y Recursos Forestales 13:161–177Google Scholar
  29. Passavalli L (1935) L’olmo siberiano (Ulmus pumila L.). Sua importanza nella difesa da Ceratostomella (Graphium) ulmi Buis. L’Alpe 22:409–418Google Scholar
  30. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  31. Prentis PJ, White EM, Radford IJ, Lowe AJ, Clarke AR (2007) Can hybridization cause local extinction: a case for demographic swamping of the Australian native Senecio pinnatifolius by the invasive Senecio madagascariensis?. New Phytol 176:902–912PubMedCrossRefGoogle Scholar
  32. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  33. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Ann Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  34. Rieseberg LH, Zona S, Aberbom L, Martin TD (1989) Hybridization in the island endemic, Catalina mahogany. Conserv Biol 3:52–58CrossRefGoogle Scholar
  35. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216PubMedCrossRefGoogle Scholar
  36. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  37. Santamour FS Jr, Bentz SE (1995) Updated checklist of elm (Ulmus) cultivars for use in North America. J Arboric 21:122–131Google Scholar
  38. Santini A, Fagnani A, Ferrini F, Mittempergher L (2002) ‘San Zanobi’ and ‘Plinio’ elmtrees. HortScience 37:1139–1141Google Scholar
  39. Santini A, Fagnani A, Ferrini F, Ghelardini L, Mittempergher L (2005) Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. Forest Pathol 35:183–193CrossRefGoogle Scholar
  40. Santini A, Fagnani A, Ferrini F, Ghelardini L, Mittempergher L (2007) ‘Fiorente’ and ‘Arno’ Elm trees. HortScience 42:712–714Google Scholar
  41. Santini A, La Porta N, Ghelardini L, Mittempergher L (2008) Breeding against Dutch elm disease adapted to the Mediterranean climate. Euphytica 163:45–56CrossRefGoogle Scholar
  42. Sibilia C (1930) La moria degli olmi in Italia. Boll R Staz Pat Veg 10:281–283Google Scholar
  43. Sibilia C (1932) La resistenza dell’Ulmus pumila a Ceratostomella ulmi. Boll R Staz Pat Veg 11:360–364Google Scholar
  44. Smalley EB, Guries RP (1993) Breeding elms for tolerance to Dutch elm disease. Ann Rev Phytopathol 31:325–352CrossRefGoogle Scholar
  45. Solla A, Bohnens J, Collin E, Diamandis S, Franke A, Gil L, Buron M, Santini A, Mittempergher L, Pinon J, Vanden Broeck A (2005) Screening European elms for resistance to Ophiostoma novo-ulmi. For Sci 51:134–141Google Scholar
  46. USDA, NRCS. 2002. PLANTS Database, version 3.5. Online, website http://plants.usda.gov. National Plant Data Center, Baton Rouge, Louisiana, US
  47. Vila M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217CrossRefGoogle Scholar
  48. Ware GH (1995) Little-known elms from China: landscape tree possibilities. J Arboric 21:284–288Google Scholar
  49. Whiteley RE, Black-Samuelsson S, Clapham D (2003) Development of microsatellite markers for the European white elm (Ulmus laevis Pall.) and cross-species amplification within the genus Ulmus. Mol Ecol Notes 3:598–600CrossRefGoogle Scholar
  50. Wiegrefe, SJ (1992) Molecular genetic variation in the Ulmaceae: phylogenetic implications. Ph.D. thesis, University of Wisconsin-MadisonGoogle Scholar
  51. Wyman D (1951) Elms grown in America. Arnoldia 11:79–93Google Scholar
  52. Zalapa JE, Brunet J, Guries RP (2008a) Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China. Genome 51:492–500PubMedCrossRefGoogle Scholar
  53. Zalapa JE, Brunet J, Guries RP (2008b) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.). Molec Ecol Res 8:109–112CrossRefGoogle Scholar
  54. Zalapa JE, Brunet J, Guries RP (2009) Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. Am J Bot 96:1116–1128PubMedCrossRefGoogle Scholar
  55. Zalapa JE, Brunet J, Guries RP (2010) The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). Evol Appl 3:157–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • Johanne Brunet
    • 1
  • Juan E. Zalapa
    • 2
  • Francesco Pecori
    • 3
  • Alberto Santini
    • 3
  1. 1.USDA-ARS, VCRU, Department of EntomologyUniversity of WisconsinMadisonUSA
  2. 2.USDA-ARS, VCRU, Department of HorticultureUniversity of WisconsinMadisonUSA
  3. 3.Institute of Plant Protection, C.N.R.Sesto FiorentinoItaly

Personalised recommendations